期刊文献+

基于聚类的二级模糊综合评判的车型识别研究 被引量:2

Vehicle Recognition Research Using Two-hierarchy Synthesis Evaluation Based on Fuzzy Clustering
在线阅读 下载PDF
导出
摘要 提出了一种基于模糊理论的有效车型识别分类方法,该方法采用基于聚类的二级评判模型,能够比较真实准确地反映实际情况,不仅大大减少了主观因素决断的影响,而且判断执行的效率较高,满足实时性要求。结果表明该方法有效提高了智能车型的识别率,同时具有很好的可扩展性。 Proposes an effective method based on fuzzy set theory to classify traffic vehicle.Such method uses two-hierarchy synthesis evaluation model based on fuzzy clustering and can truly and accurately reflect practical situations.It can not only reduce influences caused by subjective factors in a large-scale,but also be performed in a high efficiency way,meeting real-time requisition.The results of study manifest that it improves the level of recognition and meanwhile has a well expandable capability.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第12期202-205,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:79970025) 国家部委预研基金项目
关键词 模糊聚类分析 模糊综合评判 特征提取 车型分类 fuzzy clustering analysis,fuzzy synthesis evaluation,feature extraction,vehicle classification
  • 相关文献

参考文献5

  • 1徐扬 秦克云 等.模糊模式识别及其应用[M].成都:西南交通大学出版社,1998..
  • 2耿彦峰,马钺.基于模糊模式识别的车型分类研究[J].计算机工程,2002,28(1):133-135. 被引量:19
  • 3顾国华,陈钱,张保民.一种基于红外检测的车型自动分类电子收费系统[J].交通与计算机,2002,20(6):33-35. 被引量:6
  • 4Christiane Stutz,Thomas A Runkler[J].Classification and Prediction of Road Traffic Using Application-Specific Fuzzy Clustering[J].IEEE Trans Fuzzy Syst, 2002; 10 (3): 297~308.
  • 5Gui-yan Jiang,Jiang-feng Wang. The Study on the application of Fuzzy Clustering Analysis in the dynamic identification of road traffic state[C].In:the IEEE 6th International Conference on Intelligent Transportation Systems-Shanghai ,2003:1149~ 1152.

二级参考文献8

共引文献25

同被引文献19

  • 1陈守煜,韩晓军,王建明,伏广涛.模糊聚类、识别、优选统一理论与循环迭代模型[J].大连理工大学学报,2004,44(6):883-886. 被引量:10
  • 2许海洋,汪国安,王万森.模糊聚类分析在数据挖掘中的应用研究[J].计算机工程与应用,2005,41(17):177-179. 被引量:26
  • 3武妍,王守觉.基于多层感知机和RBF转换函数的混合神经网络[J].计算机工程,2006,32(6):25-27. 被引量:2
  • 4BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].New York:plenum press,1981.
  • 5LINGRAS P.Unsupervised rough set classification using gas[J].Journal of Intelligent Information System,2001,16 (3):215-228.
  • 6PAVLIDIS T,SWARTS J.Fundamentals of bar code information theory[J].IEEE Computer Magazine,1990,23(4):74-86.
  • 7Rui Zhang,ZongBen Xu, GuangBin Huang,et al. Global Convergence of Online BP Training With Dynamic Learning Rate[ J ]. Neural Net- wol:ks and Learning Systems, IEEE Transactions on, 2012,23 ( 2 ) : 330 - 341.
  • 8Fernandez Delgado M, Ribeiro J, Cernadas E, et al. Fast weight calcu- lation for kernel-based perceptron in two-class classification problems : Neural Networks ( IJCNN ) [ C ]. The 2010 International Joint Confer- ence on,2010:1098-7576.
  • 9Ho C Y F, Ling B W K, Iu H H C. Invariant Set of Weight of Percep- tron Trained by Perceptron Training Algorithm [ J ]. Systems, Man, and Cybernetics,2010 ,40 (6) : 1521 - 1530.
  • 10Peijian J, Wei S, Dizhi Z. An enhanced cooperative MAC protocol based on perceptron training [ C ]. Wireless Communications and Net- working Conference ( WCNC), 2013 IEEE ,2013,404 - 409.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部