期刊文献+

基于支撑向量机在线学习方法的短期负荷预测 被引量:2

Online-Learning Support Vector Machine Approach for Short Term Load Forecasting
在线阅读 下载PDF
导出
摘要 提出了基于支撑向量机在线学习方法的短期负荷预测,该方法克服了传统的支撑向量机负荷预测当训练样本集合改变时为了保证预测精度必需重新进行训练来得到新的回归函数的缺点.充分利用支撑向量机解的稀疏性和前一次的训练结果,提出了递增和递减算法,直接修改原有回归函数的系数来得到新回归函数.实例计算表明,该方法与传统支撑向量机方法相比,具有计算速度快,推广能力强的显著特点,在相同预测精度下,计算速度提高了近两个数量级. A new approach for short term load forecasting based on online-learning support vector machine (SVM) algorithm is presented. The conventional implementations of support vector machine are usually inefficient for online learning because one must retrain from scratch as the training set is modified to ensure the forecasting accuracy. An accurate online-learning support vector machine algorithm, which efficiently updates a trained regression function whenever a sample is added to or removed from the training set, is proposed. The practical examples show that the online-learning support vector machine algorithm outperforms the conventional SVM with higher computing rate as well as better generalization.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第4期412-416,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(59937150 60075001).
关键词 短期负荷预测 支撑向量机 在线学习 Decision support systems Electric power systems Learning systems Matrix algebra Online systems
  • 相关文献

参考文献10

  • 1赵登福,王蒙,张讲社,王锡凡.基于支撑向量机方法的短期负荷预测[J].中国电机工程学报,2002,22(4):26-30. 被引量:103
  • 2Masters T. Neural, novel & hybrid algorithms for time series prediction[M]. New York: John Wiley & Sons Inc, 1995.
  • 3Papalexopoulos A D, Hesterberg T C. A regression based approach to short term system load forecasting [A]. 1989 PICA Conference, Seattle,USA,1989.
  • 4Lanchlan A M. An improved novelty criterion for resource allocating networks[A]. IEE Artificial Neural Networks Conference, Bruges, Belgium, 1997.
  • 5Srinivasan D, Tan S S, Chang C S, et al. Practical implantation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J]. IEE Proc-Gener Transm,1998,11(6):687-692.
  • 6Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1999.
  • 7Smola A, Scholkopf B. A tutorial on support vector regression[M]. London: Royal Holloway College, 1998.
  • 8Platt J C. Advances in kernel methods: support vector machines[M]. Cambridge, USA: MIT Press, 1998.
  • 9Shevade S K, Keerthi S S, Bhattacharyy C, et al. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans on Neural Networks, 2000,11(5): 1 188-1 193.
  • 10Cauwenberghs G, Poggio T. Advances in neural information processing system 13[M]. Cambridge, USA, MIT Press,2002.

二级参考文献9

  • 1[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 2[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 3[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 4[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 5[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 6[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.
  • 7[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998.
  • 8[8]J.C. Platt , Fast training of support vector machines using sequential optimization , in B. Scholkopf , C. Burges , and A. Smola. Advances in kernel methods: support vector machines[M], Cambridge, MA: MIT Press, 1998.
  • 9[9]S.K.Shevade , S.S. Keerthi , C. Bhattacharyy and K.R.K. Murthy , Im-provements to SMO algorithm for SVM regression[J], IEEE Trans. on Neural Networks,2000,11(5): 1188-1193.

共引文献102

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部