期刊文献+

谐和激励下强非线性杜芬-范德波振子的响应 被引量:2

Responses of Duffing-van der Pol oscillator with strongnonlinearity subject to harmonic excitation
在线阅读 下载PDF
导出
摘要 为了研究力学与电子系统中典型强非线性系统的性质,提出求解强非线性刚度的杜芬 范德波振子谐和激励下响应的平均法.基于系统的哈密顿作用量及相位差是慢变量而角变量是快变量原理,通过对角变量的平均推导出系统共振时作用量及相位差的平均方程,给出不同参数时系统稳态响应的频响曲线,经过数字模拟研究了系统锁相运动的稳定性,得到了确定稳定域的近似公式并讨论了该近似公式的适用范围.数值仿真结果表明, 用该平均法预测系统的稳态响应具有很高的精度,且该方法可适用于非常强的非线性系统. To study the property of typical strongly nonlinear oscillators in mechanical and electronic systems, an averaging method to solve the approximate stationary response of a Duffing-van der Pol oscillator with strongly nonlinear stiffness and weak nonlinear damping subject to harmonic excitation was proposed. The differential equations for Hamiltonian, angle variable and phase were derived, and the property that the Hamilton and phase varied slowly while the angle variable varied rapidly was pointed out. Averaging with respect to angle variable yield the averaged equations for Hamilton and phase, the steady-state amplitude responses of the system were obtained and the stability of the analytical results was discussed. The simulation results show that the proposed averaging method agrees well with those from digital simulation of original system, and can be applied for the system with very strong nonlinearity with high precision.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第3期445-448,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(10002015) 浙江省自然科学基金资助项目(102040).
关键词 杜芬-范德波振子 强非线性系统 哈密顿系统 平均法 Computer simulation Differential equations Equations of motion Frequency response Hamiltonians Nonlinear systems Numerical analysis
  • 相关文献

参考文献9

  • 1NAYFEH A H, MOOK D T, Nonlilliear Oscillator[M].New York: John Wiley & Sons, 1979.
  • 2BOGOLINBOV N N, MITROPOLSK I A. Asymptotic Methods in the Theory of Nonlinear Oscillator [M].Moscow: Nauka(in Russian), 1961.
  • 3陈予恕 唐云.非线性动力学中的现代分析方法[M].北京:科学出版社,1991..
  • 4YUSTE S B, BEJARANO J D. Improment of a Krylov-Bogoliubov method that uses Jacobi elliptic functions [J].Journal of Sonnd and Vibration, 1990, 139(1): 151 - 163.
  • 5XU Z, CHEUNG Y K. Averaging method using generalized harmonic functions for strongly nonlinear oscillators [J]. Journal of Sound and Vibration, 1994, 174:563 - 576.
  • 6CHEUNG Y K, XU Z. Internal resonance of strongly nonlinear autonomous vibrating systems with many degree of freedom [J]. Journal of Sound and Vibration,1995, 180: 229-238.
  • 7CHEN S H, YANG X M, CHUENG Y K. Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic perturbation method [J]. Journal of Sound and Vibration, 1998, 212(5): 771- 780.
  • 8宋志刚,金伟良.工程结构振动舒适度的抗力模型[J].浙江大学学报(工学版),2004,38(8):966-970. 被引量:11
  • 9GRADSHTEYN I S, RYZHIK I M.Table of Integrals,Series and Products [M]. San Diego, CA: Academic Press, 1980.

二级参考文献11

  • 1金伟良 宋志刚.振动人机工程学在结构工程中的应用[J].建筑科学,2002,18(2):1-6.
  • 2金伟良 宋志刚.基于人体振动舒适度的楼板振动设计的若干问题[J].建筑科学,2002,18(2):123-126.
  • 3瞿伟廉 李桂清.自立式高耸结构抗风可靠性分析的改进方法[J].建筑结构学报,1989,10(4):1-9.
  • 4金伟良 宋志刚.高层建筑风振舒适度的不确定性分析[J].建筑科学,2002,18(2):127-131.
  • 5金伟良 宋志刚.波浪作用下海洋平台结构的振动舒适度验算[J].建筑科学,2002,18(2):132-135.
  • 6HOLIKY M. Fuzzy probability optimization of building performance [J]. Automation in Construction, 1999,8(4): 437 - 443.
  • 7GRIFFIN M J Handbook of human vibration [M].London: Academic Press, 1994: 100-420.
  • 8张清泉,方兴华.支撑钢框架结构抗风安全度与舒适度对比分析[J].华南理工大学学报(自然科学版),1998,26(7):120-123. 被引量:1
  • 9董安正,赵国藩.高层建筑结构舒适度可靠性分析[J].大连理工大学学报,2002,42(4):472-476. 被引量:5
  • 10宋志刚,金伟良.人对振动主观反应的模糊随机评价模型[J].应用基础与工程科学学报,2002,10(3):287-294. 被引量:23

共引文献13

同被引文献28

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部