摘要
设有限群G的一切共轭类为ε1,ε2,…,εt;xi∈εi(i=1,2,…,t).把它们按基数大小顺序排列:|ε1|≤|ε2|≤…≤|εt|.设m是使得|ε1|+|ε2|+…+|εm|≥|CG(xm)|的最小正整数.Bertran曾证明:对G的任一Abel子群A,均有本文证明了:当A是非Abel群G的极大子群且A循环时,A使得(*)式中等号成立的充要条件是.
Let ε1, ε2, … , εt be all conjugate classes in a finite group G, xi∈εi(i=1, 2, … ,t) and |ε1|≤|ε2|≤…≤|εt| . Suppose m is the minimal positive integer such that E. A. Bertran has proved that for any abelian subgroup A of G.In this paper we prove that if A is a maximal subgroup of G(G nonabelian) and A cyclic then the equality sign holds if and only if
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1994年第2期134-138,共5页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
共轭类
有限群
阿贝尔子群
群的阶
conjugate class
finite group
abelian subgroup
the order of group