期刊文献+

基于支持向量机的低空飞行目标声识别 被引量:11

Acoustic recognition of low-altitude flight targets by SVM
在线阅读 下载PDF
导出
摘要 目标识别是战场低空飞行目标声预警技术的核心内容之一。为了满足声预警系统的要求,建立的识别器必须高效、具有较好的推广能力。采用了一种新的分类器一支持向量机对目标进行了分类识别。首先简要描述了直升机、巡航导弹的声信号特性,说明了支持向量机的原理。以自回归模型参数为特征向量对3种直升机、一种巡航导弹共4类目标进行了识别,并同一种前向反馈神经网络进行了识别比较。支持向量机和该神经网络得到的识别率分别为88.1%和84.1%,结果表明此方法的有效性。最后分析了两种分类器识别错误的原因,给出了提高识别率的建议。 Passive acoustic recognition for helicopters and cruise missiles in battlefields has attracted great importance. A novel classifier-support vector machine (SVM) is adopted to identify 3 kinds of helicopters and one kind of cruise missile is used The acoustic signal characteristics of helicopters and cruise missiles are described briefly with an introduction to the principle of support vector machine. After the feature extractions based on autoregression model parameters, the support vector machine achieves a recognition rate of 88.1%. A back propagation (BP) neural network is also applied to identify the above 4 targets and the recognition rate is 84.1%. The cause for the error recognition and some advices for the future work are given in the end.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第1期46-48,共3页 Systems Engineering and Electronics
基金 国防预研基金资助课题(43070101).
关键词 被动声预警 目标识别 支持向量机 神经网络 巡航导弹 Passive acousic early warning Target recognition SVM neural network Cruise missile
  • 相关文献

参考文献14

二级参考文献25

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献2576

同被引文献80

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部