期刊文献+

基于GA-BP神经网络的结构损伤位置识别 被引量:8

Structural Damage Localization Based on GA-BP Neural Network
在线阅读 下载PDF
导出
摘要 针对传统BP神经网络训练中存在的一些问题,提出了一种基于遗传算法(GA)-BP神经网络混合技术识别结构损伤位置的方法。该方法利用基因实数编码的遗传算法优化BP网络的结构及初始参数,从而大大提高了神经网络的训练精度。运用GA-BP网络与传统BP网络技术分别对两个算例进行了结构损伤定位的识别仿真,结果表明遗传BP稳定性好,精度高,对噪声有很好的鲁棒性,便于工程应用。 In order to improve the limitation which often occurs in the training process of BP neural network, a method for damage localization based on genetic algorithm(GA)-BP neural network(BPNN) combined technology is presented in the paper. The genetic algorithm coding in the real number is used to optimize the structural and original parameters of BP neural network so that the network can obtain more accurate results by learning the training patterns. Two numerical simulations are studied using GA-BP and traditional BP neural network respectively. Results show that GA-BP neural network is more stability, precision and robustness in localizing the structural damage than traditional BP neural network.
出处 《振动工程学报》 EI CSCD 北大核心 2004年第4期453-456,共4页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(编号:10372041)
关键词 BP神经网络 识别 BP网络 鲁棒性 遗传算法(GA) 初始参数 实数编码 结构损伤 工程应用 算例 Backpropagation Computer simulation Failure analysis Genetic algorithms Location Neural networks Pattern recognition
  • 相关文献

参考文献9

  • 1Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, 1974; 14 (2): 49-57
  • 2Shi Z Y, Law S S,Zhang L M. Damage localization by directly using incomplete mode shapes. Journal of Engineering Mechanics ASCE, 2000; 126 (6): 656-660
  • 3Shi Z Y, Law S S,Zhang L M. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics ASCE, 2000; 126(12): 1 216-1 223
  • 4Shi Z Y, Law S S,Zhang L M. Improved damage quantification from elemental modal strain energy change.Journal of Engineering Mechanics ASCE, 2002; 128(5) :521-529
  • 5Wu X, Gbaboussi J,Garrett J H. Use of neural network in detection of structural damage. Computers and Structures, 1992; 42(4):649-659
  • 6Zapico J L, Worden K, Molina F J. Vibration-based damage assessment in steel frames using neural networks. Smart Materials and Structure, 2000; 10:553-559
  • 7于德介,雷慧.用BP神经网络诊断结构破损[J].工程力学,2001,18(1):56-61. 被引量:9
  • 8Peter J A, Gregory M S,Jordan B P. An evolutionary algorithm that constructs recurrent neural networks.IEEE Transactions on Neural Network works, 1994; 5:54-64
  • 9李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践,1999,19(2):65-69. 被引量:174

二级参考文献8

  • 1刘豹.模糊工程[J].决策与决策支持系统,1995(3):1-5. 被引量:2
  • 2李敏强 纪仕光 等.基于网络描述的系统模型及其管理系统.复杂巨系统理论·方法·应用[M].北京:科学技术文献出版社,1994..
  • 3徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:45
  • 4刘豹,决策与决策支持系统,1995年,5卷,3期,1页
  • 5李敏强,复杂巨系统理论.方法.应用,1994年
  • 6李学桥,神经网络.工程应用,1996年
  • 7王科俊,神经网络建模、预报与控制,1996年
  • 8Wu X,Computer Structure,1992年,42卷,4期,649页

共引文献181

同被引文献59

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部