期刊文献+

语音识别中谱包自相关技术 被引量:1

Spectral Autocorrelation Technology for Speech Recognition
在线阅读 下载PDF
导出
摘要 提出了一种语音识别线性预测分析方法 :基于谱自相关和频率抽样获得谱包 ,即由归一化频率估计谱包 ,此谱包规定在 Mel频率级 ;再由语音信号谱包估计抽样自相关 ,用 IDFT提取抽样自相关估计。从抽样自相关的结果 ,最终获得谱包倒谱系数。HMM识别试验显示 :谱包倒谱系数与其他算法相比较 ,在低信噪比时 ,识别率可提高 1 0 %以上 ,识别性能明显提高 ,在噪声环境下也能达到好的识别效果。 A linear predictive analysis method of speech recognition for estimating sample autocorrelation from the speech signal spectral envelope is proposed based on spectral autocorrelation. To obtain spectral envelope from estimating frequency samples a frequency normalization can be applied to the estimated spectral envelope. The spectral envelope is the mel frequency scale and IDFT is used to extract the estimate of sample autocorrelations. The cepstral coefficients are obtained from sampling autocorrelation results. HMM experiments show that cepstral coefficients improve the performances of the recognizer at low R SN . The recogniton rate is improved more than 10% and it works well in noise environments.
出处 《数据采集与处理》 CSCD 2004年第4期421-424,共4页 Journal of Data Acquisition and Processing
基金 河南省自然科学基金 (0 41 1 0 1 0 1 0 0 )资助项目。
关键词 自相关 语音识别 IDFT 语音信号 频率估计 倒谱 线性预测 谱系数 识别率 显示 linear prediction spectral autocorrelation spectral envelope speech recognition
  • 相关文献

参考文献4

  • 1Hermansky H. Analysis and synthesis of speech based on speech transform linear predictive method [A]. Proc ICASSP[C]. Boston,MA, 1983. 777~780.
  • 2Boll S F. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE of Trans, Acoust,Speech, Signal Processing, 1979, ASSP-27 (2): 113~120.
  • 3Cohen I. Noise estimation by minima controlled recursive averaging for robust speech enhancement[J].IEEE Signal Processing Letters, 2002,9 (1): 12~15.
  • 4Doblinger G. Computationally efficient speech enhancement by spectral minima tracking in subbands [A]. EUROSPEECH'95-Proceedings of the 4th European Conference on Speech Technology and Communication[C]. 1995. 1513.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部