期刊文献+

基于内容的图像检索系统性能评价 被引量:22

An Overview of Performance Evaluation in Content-based Image Retrieval
在线阅读 下载PDF
导出
摘要 在图像检索需求多元化和专业化的推动下 ,CBIR技术日趋成熟 ,目前已有越来越多的商用和科研系统相继推出。这样就迫切需要展开对 CBIR系统性能评价标准的研究 ,因为任何一项技术都是由该领域中相应的评价标准来推动的。为了使人们对这方面的现状动态有一概略了解 ,首先讨论了基于内容的图像检索评价过程中的两个基本问题 ,即大规模数据库的建立和获取进行相关性评判 ,然后对近年来文献中所见的基于内容的图像检索系统性能评价方法进行了回顾和综述 ;最后在此基础上 ,对其发展方向进行了探讨 ,并提出建立一个标准的测试数据集用来推动基于内容的图像检索系统性能评价的发展和更好地将人结合到基于内容的图像检索系统的性能评价过程中 。 Promoted by the professional and diverse demands of image retrieval, the technique of content-based image retrieval (CBIR) becomes more mature. More and more commercial and scientific research systems are developed. As any technique is promoted by the performance evaluation of corresponding research area, for the development of effective image retrieval applications it is imperative to study the standard of performance evaluation in content-based image retrieval. Problems such as a common image database for performance comparison and a means of getting correlation judgement for queries are explained. This paper presents a review of the methods of performance evaluation in content-based image retrieval proposed in the literatures and tries to figure out the developing direction in the future. This paper also recommends that the content-based retrieval research community should establish a standard test-bed for evaluating image retrieval effectiveness. Further work needs to be done to better involve users in the evaluation process because the ultimate aim is to measure the usefulness of a system for a user. Interactive performance evaluations including several levels of feedback and user interaction need to be developed.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第11期1271-1276,共6页 Journal of Image and Graphics
基金 国家自然科学基金资助项目 ( 60 2 710 3 2 )
关键词 基于内容的图像检索 CBIR 大规模数据库 商用 交互式 测试数据 系统性能评价 相关性 综述 获取 performance evaluation, content-based image retrieval(CBIR)
  • 相关文献

参考文献34

  • 1Text retrieval Conference (TREC) web page[EB/OL], http://trec. nist. gov/, Sponsored by the National Institute of Standards and Technology (NIST) and U.S. Department of Defense.
  • 2Santini S. Evaluation vademecum for visual information system[J]. Proceedings of SPIE, 2000,3972:132-143.
  • 3Markus Koskela, Jorma Laaksonen, Sami Laakso, et al.Evaluating the performance of content-based image retrieval systems[A]. In: International Conference on Visual Information Systems (Visual 2000) [C], Lyon, France, 2000:2-4.
  • 4McDonald Sharon, Lai Ting-Sheng, Tait John. Evaluating a content based image retrieval system[A]. In.. Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval [C], New Orleans,Louisiana, USA, 2001:232-240.
  • 5Leung C, Ip H. Benchmarking for content-based visual information search[A]. In: International Conference on Visual Information Systems (VISUAL 2000 ) [C ], Lyon, France,2000:2-4.
  • 6Liu Wenyin, Su Zhong, Li Stan, et al. A performance evaluation protocol [or content-based image retrieval algorithms/systems[EB/OL], http://www, cs. cityu, edu. hk/-liuwy/PE_CBIR/.
  • 7Muller H, Muller W, Squire D M. A web-based image retrieval system for CBIR[A]. In.. International Multimedia Conference Proceedings of the 2001 ACM Workshops on Muhimedia:Multimedia Information Retrieval[C], Ottawa, Canada, 2001:50-54.
  • 8CBIR system evaluation site [ EB/OL ]. http://www.benchathlon, net
  • 9章毓晋.基于内容的视觉信息检索[M].北京:科学出版社,2000.
  • 10Corel clipart&photos [ DB/OL ]. http://www, corel, corn/products/clipartandphotos/.

二级参考文献23

  • 1胡晓峰,刘毅.基于内容检索的颜色特征匹配方法[J].小型微型计算机系统,1996,17(12):6-11. 被引量:5
  • 2徐建华.图像处理与分析[M].北京:科学出版社,1994..
  • 3[1]Rui Y,Huang T S,Ortega M,et al.Relevance feedback: A power tool in int eractive content-based image retrieval [J].IEEE Trans on Circuits and Syst fo r Video Tech,1998,8(5): 644-655.
  • 4[2]Rui Y,Huang T S.A novel relevance feedback technique in image retrieval [A].Proc 7th ACM Int Conf on Multimedia (part 2) [C].Orlando,Florida,199 9.67-70.
  • 5[3]Ishikawa Y,Subramanya R,Faloutsos C.Mindreader: Query Databases Through Multiple Examples [A].Proc 24th Int Conf on Very Large Databases [C].New York,1998.218-227.
  • 6[4]Vapnik V.The Nature of Statistical Learning Theory [M].New York: Sprin ger Verlag,1995.
  • 7[5]Burges C J C.A tutorial on support vector machines for pattern recognitio n [J].Data Mining and Knowledge Discovery,1998,2(2): 1-47.
  • 8[6]Osuna E.Applying SVMs to face detection [J].IEEE Intelligent Systems,1998,13(4): 23-26.
  • 9[7]Chapelle O,Haffner P,Vapnik V.Support vector machines for histogram-bas ed image classification [J].IEEE Trans on neural networks,1999,10(5): 1057 -1064.
  • 10[8]Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlogram s [A].Proc.of IEEE conf.on Computer Vision and Pattern Recognition [C].S an Juan,Puerto Rico,1997.762-768.

共引文献91

同被引文献173

引证文献22

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部