期刊文献+

基于神经网络矫正的非线性短时负荷预测模型 被引量:3

Nonlinear short-term load forecasting model based on neural networks correction
在线阅读 下载PDF
导出
摘要 为了解决传统神经网络负荷预测模型中,当预测日天气出现快速变化时预测误差随之增加的问题,提出了一种改进的未来一小时实时负荷预测模型。在该模型中,预测负荷通过对预测日的类似日负荷数据加一个矫正值来获得,矫正值从神经网络产生,网络结构得到简化。由于采用在线实时学习方式,该模型可以学习快速的天气变化和预测误差之间的关系,减小预测误差。仿真结果验证了该模型的有效性。 In traditional load forecasting model of neural networks, the complicated network structure and overfull input variables affect the forecasting effect. Moreover, while weather varies rapidly on the forecasting day, the load curve changes greatly, and the forecasting error will increase evidently. In order to overcome the shortcomings, an improved one-hour-ahead load forecasting model of real time is proposed. In the model, the forecasting load can be got by adding a correction value to similar day load data of forecasting day. The correction values are obtained by neural networks, and the network structure becomes simple. Owing to the manner of online learning of real time, the model can learn the relation between rapid variety of weather and forecasting errors, and forecasting errors are decreased. The simulation results show the validity of the forecasting model.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第11期1710-1713,共4页 Systems Engineering and Electronics
关键词 神经网络 短时负荷预测 矫正 非线性 neural networks short-term load forecasting correction nonlinear
  • 相关文献

参考文献8

  • 1Alexandre P, Luciano S. Confidence intervals for neural network based short-term load forcasting[J]. IEEE Trans. on Power Systems, 2000,15(4): 1191-1196.
  • 2Matsui T, Iizaka T. Peak load forecasting using analyzable structured neural network[A]. IEEE PES 2001 Winter Meeting[C]. Columbus, Ohio USA, 2001.
  • 3Drezga I, Rahman S. Short-terrm load forecasting with local ANN predictors[J]. IEEE Trans. on Power Systems, 1999,14(3): 844-850.
  • 4Vila J P, Wagner V, Neveu P. Bayesian nonlinear model selection and neural networks: a conjugate prior approach[J]. IEEE Trans. on Neural Networks, 2000,11(2): 265-278.
  • 5Daneshdoost M, Lotfalian M, Bumroonggit G. Neural network with fuzzy Set-based classification for short-term load forecasting[J]. IEEE Trans. on Power Systems, 1998, 13(4): 1386-1391.
  • 6Senjyu T, Takara H, Uezato K. One-hour-ahead load forecasting using neural network[J]. IEEE Trans. on Power Systems, 2002, 17(1): 113-118.
  • 7张涛,赵登福,周琳,王锡凡,夏道止.基于RBF神经网络和专家系统的短期负荷预测方法[J].西安交通大学学报,2001,34(4):331-334. 被引量:65
  • 8Kim K H, Youn H S, Kang Y C. Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method[J]. IEEE Trans. on Power Systems, 2000,15(2): 559-565.

二级参考文献3

共引文献64

同被引文献54

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部