期刊文献+

Frame Self-orthogonal Mendelsohn Triple Systems

Frame Self-orthogonal Mendelsohn Triple Systems
原文传递
导出
摘要 A Mendelsohn triple system of order v,MTS(v)for short,is a pair(X,B)where X is a v-set(of points)and B is a collection of cyclic triples on X such that every ordered pair of distinct points from X appears in exactly one cyclic triple of B.The cyclic triple(a,b,c)contains the ordered pairs(a,b),(b,c)and(c,a).An MTS(v)corresponds to an idempotent semisymmetric Latin square (quasigroup)of order v.An MTS(v)is called frame self-orthogonal,FSOMTS for short,if its associated semisymmetric Latin square is frame self-orthogonal.It is known that an FSOMTS(1~n)exists for all n≡1(mod 3)except n=10 and for all n≥15,n≡0(mod 3)with possible exception that n=18.In this paper,it is shown that(i)an FSOMTS(2~n)exists if and only if n≡0,1(mod 3)and n>5 with possible exceptions n ∈{9,27,33,39};(ii)an FSOMTS(3~n)exists if and only if n≥4,with possible exceptions that n ∈{6,14,18,19}. A Mendelsohn triple system of order v,MTS(v)for short,is a pair(X,B)where X is a v-set(of points)and B is a collection of cyclic triples on X such that every ordered pair of distinct points from X appears in exactly one cyclic triple of B.The cyclic triple(a,b,c)contains the ordered pairs(a,b),(b,c)and(c,a).An MTS(v)corresponds to an idempotent semisymmetric Latin square (quasigroup)of order v.An MTS(v)is called frame self-orthogonal,FSOMTS for short,if its associated semisymmetric Latin square is frame self-orthogonal.It is known that an FSOMTS(1~n)exists for all n≡1(mod 3)except n=10 and for all n≥15,n≡0(mod 3)with possible exception that n=18.In this paper,it is shown that(i)an FSOMTS(2~n)exists if and only if n≡0,1(mod 3)and n>5 with possible exceptions n ∈{9,27,33,39};(ii)an FSOMTS(3~n)exists if and only if n≥4,with possible exceptions that n ∈{6,14,18,19}.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第5期913-924,共12页 数学学报(英文版)
基金 Research supported by NSFC 10371002 Partially supported by National Science Foundation under Grant CCR-0098093
关键词 Mendelsohn triple system Latin square QUASIGROUP Group divisible design Mendelsohn triple system Latin square Quasigroup Group divisible design
  • 相关文献

参考文献16

  • 1Mendelsohn, N. S.: A natural generalization of Steiner triple systems, in Computers in Number Theory (A.O. L. Atkin and B. J Birch, Eds.), pp. 323-338, Academic Press, New York, 1971.
  • 2Denes, 3., Keedwell, A. D.: Latin Squares and Their Applications, Academic Press, New York and London,1974.
  • 3Bennett, F. E.: Self-orthogonal semisymmetric quasigroups. J. Combin. Theory, Ser. A, 33, 117-119(1982).
  • 4Fujita, M., Slaney, J., Bennett, F. E.: Automatic generation of some results in finite algebra, in Proc.13th International Joint Conference on Artificial Intelligence (Ruzena Bajcsy, Ed.), pp. 52-57, Morgan Kaufmann, 1993.
  • 5Bennett, F. E., Zhang, H., Zhu, L.: Self-orthogonal h.iendelsohn triple systems. J. Combin. Theory, Ser.A, 73, 207-218 (1996).
  • 6Xu, Y., Lu, Q.: Existence of frame SOLS of type 3nu1. J. Combin. Math. Combin. Comput., 24, 129-146(1997).
  • 7Horton, J. D.: Sub-latin squares and incomplete orthogonal arrays. J. Combin. Theory Ser. A, 16, 23-33(1974).
  • 8Hedayat, A., Seiden, E.: On the theory and application of sum composition of latin squares. Pacific J.Math., 54, 85-113 (1974).
  • 9Zhu, L.: A short disproof of Euler's conjecture concerning orthogonal latin squares (with editorial comment by A. D. Keedwell). Ars Combinatoria, 14, 47-55 (1982).
  • 10Heinrich, K., Zhu, L. : Incomplete self-orthogonal latin squares. J. Austral Math. Soc., Ser. A, 42,365-384(1987).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部