期刊文献+

消费者信用评估中支持向量机方法研究 被引量:22

Support Vector Machines Approach to Credit Evaluation
在线阅读 下载PDF
导出
摘要 消费者信用评估是金融与银行界研究的重要内容,最近的研究显示统计学习理论(SLT)方法在信用评估中有优势。本文在信用评估中应用了一种新的方法——支持向量机方法(SVM),该方法属于机器学习理论发展的最新阶段,具有专门针对有限样本、算法复杂度与样本维数无关等优点。使用真实的信用卡数据实证结果表明,本方法具有较好的预测能力,在与国内某商业银行现有信用卡个人信用评估方法的对比研究中,该方法具有明显的优势。 Credit assessment has attracted lots of researchers in financial and banking industry. Recent studies have shown (that) Statistic Learning Theory(SLT) methods are competitive to statistical methods for credit assessment. This article (applies) support vector machines(SVM), a relatively new machine learning technique, to the credit assessment problem for (better) explanatory power. The structure of SVM has many computation advantages, such as special direction at a finite (sample) and irrelevance between the complexity of algorithm and the sample dimension. A real credit card data experiment (shows) that SVM method has outstanding assessment ability. Compared with the method that is currently used by a major (Chinese) bank, the SVM method has a great potential superiority in predicting accuracy.
出处 《系统工程》 CSCD 北大核心 2004年第10期35-39,共5页 Systems Engineering
基金 国家杰出青年基金资助项目(70028101) 中国科学院院长基金资助项目(yjjz946) 中国科学院科技政策与管理研究所所长基金资助项目(0343sz)
关键词 信用评估 分类 支持向量机 SVM Credit Assessment Classification Support Vector Machines
  • 相关文献

参考文献23

  • 1Eisenbeis R A. Pitfalls in the application discriminant analysis in business and economics[J]. The Journal of Finance, 1977,3(2):875~900.
  • 2Tam K Y,Kiang M. Managerial applications of neural networks:the case of bank failure predictions[M]. Manage- ment Sciences,1992,38(1):926~947.
  • 3Frydman H,Altman E I,Kao D L. Introducing recursive partitioning for financial classification:the case of financial distress[J]. Journal of Finance, 1985, 40 (1): 269~291.
  • 4王春峰,李汶华.小样本数据信用风险评估研究[J].管理科学学报,2001,4(1):28-32. 被引量:38
  • 5Burges C J C. A tutorial on support machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998, 2(2).
  • 6Roobacert D,Van Hulle M M. View-based 3d object recognition with support vector machines:an application to 3d object recognition with cluttered background[A]. Proc.SVM Workshop at IJCAI'99[C]. Stockholm, Sweden, 1999.
  • 7Scholkopf B, et al. Face pose discrinination using support vector machines[A]. Proceedings of CVPR 2000[C]. Hilton Head Island, 2000:430~437.
  • 8Sola A J, Scholkopf B. A tutorial on support vector regression[Z]. NeuorCOLT TR NC-TR-98-030,Royal Holloway College, University of London,1998.
  • 9Bradley P. Mathematical programming approaches to machine learning and data mining[D]. Madison,WI,USA:Computer Science Department(TR-98-11),University of Wisconsin,1998.
  • 10Suykens J A K,et al. Optimal control by least squares support vector machines[J]. Neural Networks, 2001,14(1): 23~25.

二级参考文献32

  • 1王春峰,万海晖,张维.组合预测在商业银行信用风险评估中的应用[J].管理工程学报,1999,13(1):11-14. 被引量:68
  • 2陆文聪,朱兴文,阎立诚,陈念贻.PVPEC:PTC和V-PTC材料优化设计专家系统[J].计算机与应用化学,1996,13(1):39-42. 被引量:5
  • 3Vapnik V 张学工(译).统计学习理论与本质[M].北京:清华大学出版社,2000..
  • 4[1]BRADY P T. A technique for investigating on-off patterns of speech[J]. Bell Syst Tech J, 1965, 44:1-22.
  • 5[2]GERSHO A, PAKSOY E. An overview of variable rate speech coding for cellular networks[A]. IEEE Conf Selected on Topics Wireless Commun[C]. Vancouver, 1992.172-175.
  • 6[3]BULLINGTON K, FRASER J M. Engineering aspects of TASI[J]. Bell Syst Tech J, 1959, 353-364.
  • 7[4]TANRIKULU O, BAYKAL B, CONSTANTINIDES A G, et al. Residual echo signal in critically sampled subband acoustic echo cancellers based on IIR and FIR filter banks[J]. IEEE Trans on Signal Proccessing, 1997,45(4):901-912.
  • 8[5]RABINER L R, SAMBUR M R. Voiced-unvoiced-silence detection using the Itakura LPC distance measure[A]. IEEE Int Conf Acoust, Speech and Signal Processing[C]. Hartford, CT,USA, 1977. 323-326.
  • 9[6]YONMA N B, MCINNES F, JACK M. Robust speech pulse-detection using adaptive noise modeling[J]. Electron Lett, 1996, 32(15):1350-1352.
  • 10[7]TUCKER R. Voice activity detection using a periodicity measure[J]. Proc Inst Elect Eng, 1992, 139:377-380.

共引文献2436

同被引文献188

引证文献22

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部