期刊文献+

一种改进的盲信号分离方法 被引量:4

An Improved Blind Sources Separation Method
在线阅读 下载PDF
导出
摘要 指出了在盲信号分离过程中 ,基于独立分量分析的定点算法 ,具有结构简单、运算速度快的特点 ,但是在有些情况下 ,该算法是否收敛仍具有不确定性 ,限制了它的使用范围 .基于信息理论原理提出了一种改进的盲信号分离算法 ,经计算机仿真和对实际生物信号处理的实验表明 In blind sources separation(BSS) technique,a fast fixed point algorithm based on independent commponet analysis(ICA) have been developed. The algorithm possesses the advantages of simply structure and fast computation, which is an important method in extracting biomedical signals .But due to the algorithm convergency is not sure in some conditions,its application areas is limited. Therefore,we present an improved fixed algorithm based on information theory. Results from a series of simulative or actual experiments show that, the stability and convergency of algorithm is improved.
出处 《中南民族大学学报(自然科学版)》 CAS 2004年第1期38-41,45,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目 (30 370 393)
关键词 盲信号分离 独立分量分析 负熵 定点算法 BSS ICA negentropy fast fixed point algorithm
  • 相关文献

参考文献10

  • 1杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 2Aapo Hyvarinen,Juha Karhunen,Erkki Oja.Independent component analysis[M]. New York:A Wiley-Interscience Publication, 2001. 77-101
  • 3Christian Jutien,Jeanny Herault.Blind separation of sources, Part I:an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,1991,24:1-10
  • 4Comon P. Independent component analysis,a new concept[J].Signal Processing,1994,36:287-314
  • 5Bell A J,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution[J]. Signal Processing,1992,25:1-10
  • 6Amari S-I, Cichocki A,Yang H H.A new learning algorithm for blind source separation.In Advances in Neural information Processing Systems 8[M].MIT Press,1996. 757-763
  • 7Hyvarinen A .Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans on Neural Network,1999,10(3):626-634
  • 8Hyvarinen A, Oja E.A fast fixed-point algorithms for independent component analysis[J].Neural Computation,1997,9(7):1 483-1 492
  • 9Cover T M,Thomas J A.Elements of information theory[M]. New York:Wiley, 1991
  • 10Papoulis A. Probability,random variables and stochastic process[M].3rd ed. New York:McGraw-Hill,1991

二级参考文献10

  • 1Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 2Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998
  • 3Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998
  • 4Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999
  • 5Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998
  • 6Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994
  • 7Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999
  • 8Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996
  • 9Comon P.Independent component analysis:A new concept ?[].Signal Processing.1994
  • 10Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[].Neural Computation.1997

共引文献57

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部