期刊文献+

1/f信号的积分多小波变换表示 被引量:3

Integral Multiwavelet Representation of 1/f Signal
在线阅读 下载PDF
导出
摘要 在积分多小波变换理论的基础上,研究了1/f信号的积分多小波变换表示,给出了用积分多小波逆变换产生1/f信号(非近似1/f信号)的条件。并对1/f信号的积分多小波变换的统计特性进行了研究,证明1/f信号的统计自相似性在多小波域内可由积分多小波系数的自相关函数矩阵来表达.基于单小波变换的1/f信号表示是其特例。 Based on the theory of integral multiwavelet transformation, the representation of 1/f signal (not near-1/f signal) is explored by inverse integral multiwavelet transformation, and the conditions of representing 1/f signal are acquired. The statistical characteristics of integral multiwavelets transformation are studied, and it is proved that the self-similar characteristics of 1/f signal can be represented by the autocorrelation matrix of coefficients of integral multiwavelet in multiwavelet domain. The representation of 1/f signal by singular wavelet is only the special case of the representation.
出处 《电子与信息学报》 EI CSCD 北大核心 2004年第10期1638-1644,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60272072) 国家教育部高等学校博士点基金(60272072) 跨世纪优秀人才计划(2002年度)资助课题
关键词 1/f信号 自相似性 积分多小波变换 分形布朗运动 1/f signal Self-similar Integral multiwavelet transformation Fractal Brown motion
  • 相关文献

参考文献6

  • 1Wornell G. W. Signal Processing with Fractals: A Wavelet-Based Approach. New York: Prentice Hall PTR, 1996: 43-54.
  • 2Chui C K, Lian J. A study of orthonormal multi-wavelets. Appl. Numer. Math., 1996, 20(3):273-298.
  • 3Lebrun J. High-order banlanced multiwavelets: Theory, factorization, and design. IEEE Trans.on Signal Processing, 2001, SP-49(9): 1918-1930.
  • 4Flandrin P. Wavelet analysis and synthesis of fractional Browian motion. IEEE Trans. on Information Theory, 1992, IT-38(2): 910-917.
  • 5Tewfik A H, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans. on Information Theory, 1992, IT-38(2): 904-909.
  • 6Barton R J, Poor V H. Signal detection in fractional Gaussian noise. IEEE Trans. on Information Theory, IT-1988, 34(5): 943-959.

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部