期刊文献+

泛逻辑的一级泛运算模型的代数性质 被引量:2

Some Algebraic Properties about the 1-level Universal Operation Model of Universal Logic
在线阅读 下载PDF
导出
摘要 论文讨论泛逻辑的一级泛运算模型的基本代数性质。证明了T(x,y,h,k)(h∈(0,0.75),k∈(0,1))是幂零的阿基米德型三角范数,T(x,y,h,k)(h∈(0.75,1),k∈(0,1))是严格的阿基米德型三角范数;泛与运算模型与泛蕴涵运算模型形成一个伴随对。当h∈(0,0.75),k∈(0,1)时,有界格(眼0,1演,∨,∧,觹,→,0,1)做成一个MV-代数;当h∈(0.75,1),k∈(0,1)时,有界格(眼0,1演,∨,∧,觹,→,0,1)做成一个乘积代数。进一步,给出了一级泛与运算模型与泛或运算模型的加性生成元与乘性生成元。 In this paper,we discuss some basic properties about the model of 1-level universal operation model of universal logic.We prove that the norm T(x,y,h,k) is nilpotent Archimedean for h∈(0,0.75)and k∈(0,1),and the norm T(x,y,h,k) is strict Archimedean for h∈(0.75,1)and k∈(0,1).The model of universal conjunction T(x,y,h,k) and the model of universal implication I(x,y,h,k)form an adjoint pair.It was shown that the bounded lattice (,∨,∧,T,I,0,1) is a MV-algebra for h∈(0,0.75) and k∈(0,1),and the bounded lattice (,∨,∧,*,→,0,1)is a product algebra for h∈(0.75,1) and k∈(0,1).Moreover,we give an additive generator and a multiplicative generator of the universal conjunction and the universal disjunction respectively.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第30期4-7,28,共5页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60273087) 北京市自然科学基金(编号:4032009)资助
关键词 泛与运算模型 泛或运算模型 伴随对 加性生成元 乘性生成元 model of universal conjunction,model of universal disjunction,adjoint pair,ddditive generator,multiplicative generator
  • 相关文献

参考文献4

  • 1E P Klement,R Mesiar,E Pap.Triangular Norms[M].Kluwer Academic Publishers, 2000
  • 2E P Klement,R Mesiar,E Pap.Triangular Norms. Position Paper Ⅰ:basic analytical and algebraic properties[J].Fuzzy Set and Systems,2004; (143) :5~26
  • 3Hajek P. Matamathematics of Fuzzy Logic[M].Kluwer Academic Publishers, 1998
  • 4Stanley Burris,H P Sankappanavar. A Course in Universal Algebra[M].Springer-verlag New York Heidelberg Berlin, 1981

同被引文献16

  • 1罗敏霞,何华灿.基于幂零泛与运算模型的命题模糊逻辑[J].计算机科学,2004,31(8):97-99. 被引量:3
  • 2纪滨.粗糙集理论及进展的研究[J].计算机技术与发展,2007,17(3):69-72. 被引量:10
  • 3Rose P A~Rosser J 13. Fragments of many valued statement calculi[J] Trant. A. M. S. ,1958, 87: 1-53
  • 4Dummett M. A propositional calculus with denumerable matrix [J]. Journal of Symbolic Logic, 1959,24: 97- 106
  • 5Hajek P, Godo L,Esteva F. A complete many-valued logic with product conjunction[J]. Archive for Mathematical Logic, 1996, 35:191-208
  • 6Klement E P, Mesiar R,Pap E. Triangular Norms: Kluwer Academic Publishers, 2000
  • 7Hajek P. Metamathematics of fuzzy logic[M]. Kluwer Academic Publishers, 1998
  • 8Esteva F, Godo L, Hajek P, et al. Residuated fuzzy logic with an involutive negation[J]. Archive for Mathematical Logic, 2000, 39:103-124
  • 9罗敏霞,何华灿.基于严格泛与运算模型的命题模糊逻辑[C].见:模糊逻辑与计算智能研究进展,2005.121-126
  • 10苏运霖,管纪文.证据论与约集论[J].软件学报,1999,10(3):277-282. 被引量:10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部