期刊文献+

协同过滤推荐项目优化处理的初步研究 被引量:1

A Preliminary Study about Optimization of Recommendations in Collaborative Filtering Algorithms
在线阅读 下载PDF
导出
摘要 协同过滤(CF)推荐系统应用知识发现技术为实时交易的用户提供个性化的产品或服务推荐。这些系统在电子商务领域取得了很大的成功。但是,在克服CF推荐系统的算法可伸缩性和推荐质量这两个根本性挑战方面还存在许多问题。本文分析了传统的CF算法,并介绍了一种提高推荐质量的新方法,我们称这种新方法为CF算法的推荐优化。从我们的分析可得,我们的方法相比传统的CF算法提供了更高的质量保证。 Collaborative Filtering(CF)Recommender systems apply knowledge discovery techniques to the problem of making personalized recommendations for products or services during a live interaction. These systems are achieving widespread success in the E-commence or Web. However, there remain important research questions in overcoming two fundamental challenges for CF Recommender systems. They are the scalability of CF algorithms and the quality of recommendations. In this paper, we analyze the traditional CF algorithms, and introduce a novel approach to improve the quality of the recommendations for the users. We name it Optimization of Recommendations in CF Algorithms. From our analysis, it is obviously that our approach provides better quality than traditional CF algorithms.
出处 《计算机科学》 CSCD 北大核心 2004年第10期76-78,共3页 Computer Science
关键词 协同过滤 推荐系统 算法 可伸缩性 CF 实时交易 用户 项目 电子商务 产品 Collaborative filtering recommendation algorithms, Scalability, Quality of recommendations, Optimization of recommendations
  • 相关文献

参考文献11

  • 1Badrul S, George K, Joseph K, John R. Item-based Collaborative Filtering Recommendation Algorithms, 2001
  • 2Billsus D, Pazzani M J. Learning Collaborative Information Filters. In:Proc. of ICML'98. 1998.46-53
  • 3Breese J S, Heckerman D,Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In:Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, 1998. 43-52
  • 4Goldberg D, Nichols D, Oki B M, Terry D. Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM. Dec. 1992
  • 5Herlocker J,Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation: [Technical Report CMPT99-12]. School of Computing Science, Simon Fraser University
  • 6Konston J,et al. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 1997,40(3): 77-87
  • 7Herlocker J, Konstan J, Borchers A, Riedl J. An Algorithmic Framework for Performing Collaborative Filtering. In: Proc. of ACM SIGIR'99, ACM press, 1999
  • 8Resnick P, Iacovou N, Suchak M, Bergstorm P, Riedl J. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In:Proc. of CSCW'94, Chapel Hill,NC
  • 9Peppers D,Rogers M. The One to One Future: Building Relationships One customer at a Time. Bantam Doubleday Dell Publishing,1997
  • 10Wolf J, Aggarwal C, Wu K-L, Yu P. Horting Hatches an Egg:A New Graph-Theoretic Approach to Collaborative Filtering. In:Proc. of ACM SIGMOD Intl. Conf. on Knowledge Discovery &Data

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部