期刊文献+

自适应遗传算法在变压器超高频局放模式识别中的应用 被引量:2

Application of Adaptive Genetic Algorithm to Transformer Ultra-High-Frequency PD Pattern Recognition
在线阅读 下载PDF
导出
摘要 采用自适应遗传算法 ( AGA)作为神经网络的学习算法 ,对实验室中变压器超高频局部放电自动识别系统检测到的 5种放电类型进行了模式识别。实验结果表明 ,AGA神经网络解决了 BP神经网络对初始权值敏感、收敛速度慢和容易局部收敛的问题 ,具有较高的识别率和较强的推广能力 。 Based on the study of discharge properties, an automatic pattern recognition system for transformer ultra-high-frequency (UHF) PD is designed and developed in this paper.An adaptive genetic algorithm (AGA) is used to train the neural network (NN) in system. Using BP-NN and AGA-NN, we distinguish the basic types of defects appearing in transformers, such as corona, void, bubble, creeping discharge and floating discharge. Tests in laboratory show that the results are satisfactory. Compared with BP-NN, AGA-NN can overcome slow convergence and possibility of being trapped at local minimum value. Thus, the convergence, discrimination and generalization ability of AGA-NN are more powerful.
出处 《湖南电力》 2004年第5期4-7,37,共5页 Hunan Electric Power
关键词 变压器 超高频局部放电检测 模式识别 自适应遗传算法 神经网络 transformer ultra-high-frequency PD detection pattern recognition adaptive genetic algorithm neural network
  • 相关文献

参考文献5

  • 1Krivda A. Automated recognition of partial discharges. IEEE Trans. on D&EI. 1995, 2 (5): 796-821.
  • 2Gulski E. Digital analysis of partial discharges. IEEE Trans. on D&EI, 1995, 2 (5): 822-837.
  • 3Gulski E and Krivda A. Neural networks as a tool for recognition of partial discharges. IEEE Trans. onEI, 1993, 28 (6): 984- 1001.
  • 4Ziomek W, Reformat M and Kuffel E. Application of genetic algorithms to pattern recognition of defects in GIS. IEEE Trans.on D&EI. 2000, 7 (2): 161-168.
  • 5王国利,郝艳捧,贾志东,李彦明,张建刚.电力变压器典型局放模型放电脉冲的特性研究[J].高电压技术,2001,27(2):5-8. 被引量:44

二级参考文献2

  • 1库钦斯基ГC.高压电器设备局部放电[M].北京:水利电力出版社,1984..
  • 2库钦斯基 ГС,高压电器设备局部放电,1984年

共引文献43

同被引文献20

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部