期刊文献+

一种改善小波变换模极大值重构信号的整体变分方法 被引量:4

Total Variation Improved Wavelet Modulus Maxima Reconstruction
在线阅读 下载PDF
导出
摘要 在小波变换模极大值去噪原理的基础上 ,通过整体变分法估计模极大值以外、非零值的小波系数 ,然后经过小波逆变换重构信号 .为求解这个极小化问题 ,采用了改进的次梯度方法 .数值计算结果表明 :我们提出的方法有效抑制了小波变换中固有的伪Gibbs现象 ,重构信号的边缘、脉冲位置都十分准确 ,信噪比也得到明显改善 . A novel hybrid method is presented, which combines Wavelet Transform Modulus Maxima and Total Variation, to improve reconstruction by way of using the nonzero wavelet coefficients besides modulus maxima. How to determine the nonzero wavelet coefficients is a minimization problem, an exact penalty function approach is used. Then an improved sub-gradient algorithm is utilized. The numerical experiments show that pseudo-Gibbs phenomena are restrained, the edge and peak location of reconstructed signal are very exact, and SNR is distinctly improved.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第10期1713-1715,共3页 Acta Electronica Sinica
关键词 小波 整体变分 模极大值 信号去噪 信号重构 次梯度 Algorithms Optimization Signal filtering and prediction Signal to noise ratio Wavelet transforms
  • 相关文献

参考文献5

  • 1Chan T F,H M Zhou. Total variation improved wavelet thresholding in image compression[A].Proceedings of the 2000 International Conference on Image Processing[C].Piscataway,NJ:IEEE Press,2000.391-394.
  • 2Sylvain Durand,Jacques Froment.Reconstruction of wavelet coefficients using total variation minimization[J].SIAM Journal of Scientific Computing,2003,24(5):1754-767.
  • 3Mallat S.Singularity detection and processing with wavelets[J].IEEE Transaction on Information Theory,1992,38(2):617-643.
  • 4Meyer Y.Wavelet:Algorithm and Applications[M].Philadelphia:SIAM,1993.
  • 5Rudin L I,Osher S.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268.

同被引文献30

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部