期刊文献+

神经网络多模型软测量技术及应用 被引量:2

Multi-modeling Soft-sensing Technique and Its Application Based on Neural Network
在线阅读 下载PDF
导出
摘要 基于多模型思想,采用模糊聚类的方法对软测量数据进行了分类,对每类数据基于神经网络(NN)建模,采用RBF神经网络构造了每个数据样本的隶属度,将各模型输出的数据进行隶属度加权求和得到最终的软测量输出,并对某催化重整生产装置催化剂再生器氧含量进行了建模研究,获得了满意的结果。 Based on multi-modeling idea, fuzzy clustering method is used to classify soft-sensing data. For each class, different modeling methods based on artificial neural network are used. Furthermore, RBF neural network is used to build the degree of membership of every sample in this paper. The degrees of membership are used for combing several models to obtain the final result. The method is applied to model a practical case of oxygen content of catalyst-reforming process in petrol refining.
作者 高林 顾幸生
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期559-563,共5页 Journal of East China University of Science and Technology
关键词 多模型 软测量 模糊聚类 RBF神经网络 催化重整 multi-modeling soft-sensing fuzzy clustering RBF neural networks catalyst-reforming
  • 相关文献

参考文献3

  • 1Bates J M, Granger C W J. The combination of forecasts[J].Operations Research Quarterly, 1969,20: 319-323.
  • 2Cho S B, Kim J H. Combining multiple neural networks by fuzzy integral for robust classification[J]. IEEE Trans on Systems, Man and Cybernetics, 1995,25 (2): 380- 384.
  • 3Ramaz R M, Lelieveldt B P F, Reiber J H C. A new cluster validity index for the fuzzy C-mean[J]. Pattern Recognition Letters, 1998,19: 237-246.

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部