期刊文献+

LDPC码加权位翻转解码算法的研究 被引量:1

Study of weighted Bit Flipping Decoding Algorithm for LDPC Code
在线阅读 下载PDF
导出
摘要 本文以Tanner图上的迭代消息流传递技术为基础,分析了Gallager提出的LDPC码第一解码方案,给出基于校验和的位翻转硬判决解码算法。在此基础上引入接收信号作为可靠性评估,使评估值作为硬判决的加权系数,从而提出基于校验和的加权位翻转解码算法。加权位翻转算法充分考虑了接收符号的信息;为了快速搜索翻转位,对不满足的校验方程数采用最大投票数排队算法。这些措施的合理应用改善了基于校验和的位翻转解码算法的性能。 This paper analyzes the first decoding scheme of LDPC codes created by Gallager, by means of the iterative message-passing technique on Tanner graph, and gives a bit-flipping hard-decision decoding algorithm based on check sum. Then it introduces receiving signal as reliability evaluate or weighted coefficient of hard-decision, consequently presents weighted bit-flipping decoding algorithm based on check sum. The weighted bit-flipping decoding algorithm adequately considers received symbol information. A 'maximum votes queue' algorithm for the numbers of which the parity-check functions were not satisfied was applied to quickly search the flipping bit. Approaches above all were used to improve bit-flipping algorithm based on parity-check sum.
作者 彭立 朱光喜
出处 《信号处理》 CSCD 2004年第5期494-496,460,共4页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60372067)
关键词 解码算法 LDPC码 硬判决 翻转 接收信号 加权 排队算法 校验和 快速搜索 消息 LDPC code iterative decoding message passing tanner graph
  • 相关文献

参考文献6

  • 1R. G. Gallager, Low-Density Parity-Check Codes.Cambddge, MA: MIT Press, 1963.
  • 2M. Sipser and D. A. Spielman, "Expander codes," IEEE Trans. Inform., Theory, vol. 42, pp. 1710-1722, Nov.1996.
  • 3D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol.45, pp. 399-431, Mar. 1999.
  • 4A. m. Chart and F. R. Kschischang, "A simple taboobased soft decision decoding algorithm for expander codes," IEEE Comm. letters, vol. 2, no.7, pp. 183-185,July. 1998.
  • 5T. Richardson and R. Urbanke, "The Renaissance of Gallage's Low-Density Parity-Check Codes," IEEE Commun. Magazine Aug. 2003., pp. 126-131.
  • 6Yu Kou, "Finite Geometry Low Density Parity Check Codes," Ph.D. dissertation, Dept. of Elec. And Computer Eng., Univ. of California, 2001.

同被引文献12

  • 1何善宝,赵春明,姜明.LDPC码的一种循环差集构造方法[J].通信学报,2004,25(11):112-118. 被引量:11
  • 2何善宝,赵春明,史志华,姜明.基于稀疏二进制序列的低密度奇偶校验码[J].通信学报,2005,26(6):81-86. 被引量:13
  • 3GALLAGER R G. Low-density parity-check codes [ J ]. IRE Transactions on Information Theory, 1962, 8 (1) : 21 -28.
  • 4MACKAY D J C, NEAL R M. Near Shannon limit performance of low-density parity-check codes [ J ]. Electronics Letters, 1996, 32 (18) : 1645 - 1646.
  • 5HU Xiao-yu, ELEFTHERIOU E, ARNOLD D M. Progressive edge-growth tanner graphs [ A ]. IEEE Global Telecommunications Conference [ C ]. 2001, San Antonio, TX, USA, 2001. 995- 1001.
  • 6CAMPELL O, MODHA D S, RAJAGOPALAN S. Designing LDPC codes using bit-filling [ A]. IEEE International Conference on Communications[ C]. 2001. 155 - 159.
  • 7CAMPELL O, MODHA D S. Extended bit-filling and LDPC code design [ A ]. IEEE Global Telecommunications Conference[C]. San Antonio, TX, USA, 2001. 985- 989.
  • 8LING S, SOLE P. On the algebraic structure of quasi-cyclic codes . infinite fields [ J ]. IEEE Transactions on Information Theory, 2001,47 (7) :2751 - 2760.
  • 9MAO Yong-yi, BANIHASHEMI A H. A heuristic search for good low-density parity-check codes at short block lengths [ A]. IEEE International Conference on Communications[ C]. Helsinki, Finland, 2001. 41 -44.
  • 10JOHNSON S J, WELLER S R. Codes for iterative decoding from partial geometries [ J ]. IEEE Transactions on Communications, 2004, 52(2): 236-243.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部