期刊文献+

无单元伽辽金法新形函数技术 被引量:2

A new technique of shape function construction with element-free Galerkin method
在线阅读 下载PDF
导出
摘要 针对目前以移动最小二乘技术构造的无单元形函数需要大量的求逆运算,且在边界处无过点插值性质而给计算带来了困难的问题,以泰勒展开理论为基础,继承最小移动二乘法的高阶连续性,用Shepard插值实现"移动最小二乘法的由局部到整体区域的移动性"及"有限元法形函数过点插值性",旨在使无单元伽辽金法的形函数在满足高阶连续性的同时具有过点插值的性质,并避免了现有无单元伽辽金法形函数求解繁琐的缺点.  The moving least-square technique is used to construct element-free shape function at present,so that a large amount of inverse matrix computation is necessary and,besides,there is no such property as point-passing interpolation at the boundary,so the a great difficulty happens with the computation.In this paper the Taylor expansion is taken as a theoretical basis,high-order continuity of moving least-square method is further inherited,and Shepard interpolation is adopted to obtain the mobility from local region to global one,which is characteristic with the method of moving least-square,and the property of point-passing interpolation of shape function,which is characteristic with the finite element method,in order to make the element-free Galerkin shape function to satisfy the requirement of high-order continuity and,at the same time,to have the property of point-passing interpolation and to avoid the tediousness with the solution by means of recent element-free Galerkin shape function.
出处 《兰州理工大学学报》 CAS 北大核心 2004年第5期108-111,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(50079005)
关键词 无单元法 移动最小二乘法 插值形函数 影响域 泰勒展开 element-free method moving least-square method interpolation shape function influcnce fields Taylor expansion
  • 相关文献

参考文献10

  • 1Lancaster P,Salkauskas K.Surfaces generated by moving least square methods [J].Mathematics of Computation,1981,155:34.
  • 2Belytschko T,Krongauz Y,Organ D,el at.Meshless method: An overview and recent developments [J].Compute Methods Appl Mech Engrg,1996,139(3):47.
  • 3Zhang Xiong,Liu Xin,Lu Mingwan.Imposition of essential boundary conditions by displacement constraint equations in meshless methods [J].Communications in Numerical Methods in Engineering,2001,17:165-178.
  • 4Gu Y T,Liu G R.A Coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids [J].Computer Methods in Applied Mechanics and Engineering,2001,190:4 405-4 419.
  • 5Igor Kaljevic,Sunil Saigal.An improved element free Galerkin formulation [J].Int J Numer Methods Engrg,1997,40:2 953- 2 974.
  • 6Xiao Q Z,Dhanasekar M.Coupling of FE and EFG using Collocation approach [J].Advances in Engineering Software,2002,33:507-515.
  • 7Rao B N,Rahman S.A coupled meshless-finite element method for fracture analysis of cracks [J].Int J Numer Method Engrg,2001,78:647-657.
  • 8Krongauz Y,Belytschko T.Enforcement of essential boundary conditions in meshless approximations using finite elements [J].Computer Methods in Applied Mechanics and Engineering,1996,131:133-145.
  • 9Hegon D.EFGM in combination with FE approaches [J].Comput Methods Appl Meeh Engrg,1996,135:143-166.
  • 10Igor Kaljevic.An improved element free Galerkin formulation [J].Int J Numer Methods Engrg,1997,40: 2 953- 2 974.

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部