期刊文献+

关于MV-代数的逻辑性质(英文) 被引量:2

On the logical properties of MV-algebras
在线阅读 下载PDF
导出
摘要 MV 代数是C.C.Chang为了提供Lukasiewicz和Tarski的多值逻辑系统的完备性定理的代数证明而发明的。它通过逻辑的观点,更进一步观察MV-代数的模型论性质。在本文中,我们研究了MV 代数的逻辑性质,得出形式化的MV 代数理论在子模、同态链的并之下有所保留;我们也证明了这个形式化的理论既不完备也不模型完备。 MV-algebras were invented by C. C. Chang[1] in order to provide an algebraic proof of the completeness theorem of the infinite-valued logic of Lukasiewicz and Tarski. It seems appropriate to take a further look at the model properties of MV-algebras by a logical point of views. In this paper, we study the logical properties of MV-algebras. We proved that the formalized MV-algebras theory is preserved under submodels, homomorphisms, and unions of chains; we also proved that this formalized theory is neither complete nor model complete.
作者 梁俊奇 赵玲
出处 《河南科学》 2004年第6期738-740,共3页 Henan Science
关键词 完备性定理 模型论 同态 代数理论 性质 代数证明 逻辑性 形式化 MV-algebra complete model complete
  • 相关文献

参考文献10

  • 1C C Chang.Algebraic analysis of many valued logic[J].Trans.Amer.Math.Soc.,1958,88:467-490.
  • 2C C Chang.A new proof of the completeness of the Lukasiewicz axioms[J].Trans.Amer.Math.Soc.,1959,93:74-80.
  • 3D Mundici.Interpretation of AF C*-algebras in Lukasiewicz sentential calculus[J].J.Of Functional Analysis,1986,65:15-63.
  • 4L P Belluce.Semisimple algebras of infinite valued logic and bold fuzzy set theory[J].Can.J.Math.,1986,6:1356-1379.
  • 5C C Chang,H J Keisler.Model Theory,2nd ed[M].North-Holland,Amsterdam,1977.
  • 6J Cuntz.The internal structure of simple C*-algebras[J].Proc.Sympos.Pure Math.1982,1(38):85-115.
  • 7R Mcnaughton.A theorem about infinite-valued sentential logic[J].J.Symbolic Logic,1951,16:1-13.
  • 8D Schwartz.Arithmetische theorie der MV-algebren endlicher ordnung[J].Math.Nachr.,1977,77:65-73.
  • 9D Schwartz.Das homomorphie theorem fur MV-algebren endlicher ordnung[J].Z.Math.Logik Grundlagen Math.,1976,22:141-148.
  • 10X S Zhao,X S Wang.The ultraproduct of fuzzy sets and its application[M].Proc.of Fuzzy Math.and Systems,1992 (Changsa,China).

同被引文献16

  • 1Chang C C. Algebraic analysis of many valued logic[J]. Trans. Amer. Math. Soc. , 1958,88 : 467 -490.
  • 2Chang C C. A new proof of the completeness of the Lukasiewicz axioms[J]. Trans. Amer. Math. Soc. , 1959,93:74-80.
  • 3Mundici D. Interpretation of AF C*-algebras in Lukasiewicz sentential calculus[J]. J. of Functional Analysis,1986,65:15-63.
  • 4Belluce L P. Semisimple algebras of infinite valued logic and bold fuzzy set theory[J]. Can. J. Math. , 1986,6;1356-1379.
  • 5Chang C C,Keisler H J. Model theory(2nded) [M]. Amsterdam ;North-Holland, 1977.
  • 6Cuntz J. The internal structure of simple C*-algebras[J]. Proc. Sympos. Pure Math. , 1982,38(1): 85- 115.
  • 7Mcnaughton R. A theorem about infinite-valued sentential logic [J]. J. Symbolic Logic, 1951,16:1- 13.
  • 8Schwartz D. Arithmetische theorieder MV-algebren endlicher ordnung[J]. Math. Nachr. , 1977,77 ; 65-73.
  • 9Schwartz D. Das homomorphie theorem fur MV-algebren endlieher ordnung[J]. Z. Math. Logik Grundlagen Math. ,1976,22:141-148.
  • 10Zhao X S,Wang X S. The ultraproduct of fuzzy sets and its application[A]. Proc. of Fuzzy Math. and Systems[C]. Changsha,China, 1992.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部