期刊文献+

一种动态自适应蚁群算法 被引量:20

A Dynamic and Adaptive Ant Algorithm
在线阅读 下载PDF
导出
摘要 针对传统蚁群算法容易出现早熟和停滞现象的缺陷,提出了一种动态自适应蚁群算法。该算法对传统的MMAS蚁群算法中的信息素进行自适应调整。实验结果表明,该算法比传统的蚁群算法和传统的MMAS蚁群算法具有更好的搜索全局最优解的能力,并具有更好的稳定性和收敛性。 This text advances a dynamic and adaptive ant algorithm in accordance with the defect of early variety and stagnation for traditional algorithm.The algorithm adjusted the message units of traditional MMAS ant algorithm adaptively.The test results indicate that this algorithm has more excellent ability in searching the whole best solution than the traditional ant algorithm and the traditional MMAS ant algorithm.In addition,this algorithm has much better stability and convergency.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第29期149-152,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60074013) 国家高性能计算基金项目(编号00210) 江苏省教育厅自然科学基金 南京大学软件新技术国家重点实验室开放基金资助
关键词 蚁群算法 自适应 信息素 优化 ant algorithm,adaptive,message units,optimization
  • 相关文献

参考文献12

  • 1Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on SMC, 1996 ;26 ( 1 ): 8~41
  • 2Dorigo M ,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computing, 1997; 1 ( 1 ): 53~56
  • 3Colorni A ,Dorigo M ,Maniezzo V.Ant colony system for job-shop scheduling[J].Belgian Journal of Operations Research Statistics and Computer Science, 1994;34( 1 ) :39~53
  • 4Maniezzo V.Exact and approximate nonditerministic tree search procedures for the quadratic assignment problem[J].Informs Journal of Computer, 1999; 11 (4) :358~369
  • 5Maniezzo V,Carbonaro A.An ANTS heuristic for the frequency assignment problem[J].Future Generation Computer Systems,2000;16(8):927~935
  • 6Gambardella L M,Dorigo M.HAS-SOP:an hybrid ant system for the sequential ordering problem[R].Technique Report,No IDSIA 97-11,IDSIA, Lugano, Switzerland, 1997
  • 7Gambardella L M,Dorigo M.Ant-Q :a reinforcement learning approach to the traveling salesman problem[C].In:Prieditis A,Russell S eds.Proceedings of the 12th International Conference on Machine Learning,Tahoe City, CA: Morgan Kaufmann, 1995: 252~260
  • 8Dorigo M,Luca M.A study of some properties of Ant-Q[R].Technical Report TR/IRIDIA/1996-4,IRIDIA,Université Libre de Brnxelles,1996
  • 9Stutzle T,Hoos H H.Improvements on the ant system:introducing the MAX-MIN ant system[C].In:Artificial Neural Networks and Genetic Algorithms, New York :Springer-Verlag, 1988: 245~249
  • 10Bilchev G,Parmee I C.Adaptive search strategies for heavily constrained design spaces[C].In:Proceedings of 22nd International Conference on Computer Aided Design' 95, Yelta: Ukraine, 1995:230~235

二级参考文献14

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 3Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 4Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 5Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 6Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 7Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 8Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 9康立山,非数值并行算法.1 模拟退火算法,1997年
  • 10李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践,1999,19(2):65-69. 被引量:174

共引文献523

同被引文献162

引证文献20

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部