期刊文献+

一种基于粗糙集的相关反馈图像检索方法 被引量:3

New Relevance Feedback Algorithm Based on Rough Set Theory for Image Retrieval
在线阅读 下载PDF
导出
摘要 针对如何在图像检索系统中客观地表达用户的感知 ,提出了一种基于粗糙集理论的相关反馈算法。通过相关反馈过程将用户感知与图像特征相结合 ,利用粗糙集理论归纳用户感兴趣的图像语义特征 ,并根据用户感兴趣的程度调整对应图像特征权重。作者建立了一个实验系统 ISS,采用颜色直方图与语义特征作为图像特征 ,并实现 MARS的反馈算法作为性能比较算法。实验结果表明 ,该算法较 MARS系统在检索性能上有较大的提高。 A novel relevance feedback algorithm for image retrieval is proposed to express human perception objectively. The algorithm combines the human perception with the image feature through the process of relevance feedback and concludes interesting image feature for users. The weights of these interesting image features are also adjusted according to the user perception. An image retrieval system-ISS is constructed. The image features are composed of the color and semantic features. The relevance feedback algorithm for multimedia analysis and retrieval system (MARS) is also implemented in the system to compare with the algorithm. Experimental results show that the retrieval performance of the algorithm is better than that of MARS.
出处 《数据采集与处理》 CSCD 2004年第3期278-281,共4页 Journal of Data Acquisition and Processing
基金 国家自然科学基金 ( 60 1135 0 2 0 F F0 30 40 5 )资助项目 科技部创新基金 ( 0 1C2 62 2 42 10 70 8)资助项目
关键词 粗糙集 图像检索 相关反馈 图像特征 MARS 权重调整 决策表 image retrieval relevance feedback image feature rough set decision table
  • 相关文献

参考文献9

  • 1Frigui H. Adaptive image retrieval using the fuzzy integral[A]. Fuzzy Information Processing Society NAFIPS. 18th International Conference of the North American[C]. 1999.575~579.
  • 2Deng Y, Kenney C. An efficient color representation for image retrieval[J]. IEEE Transactions on Image Processing,2001, 10(1):104~147.
  • 3Pawlak Z. Rough set[J]. International Journal of Information and Computer Science, 1982,11(5):341~356.
  • 4Slowinski R, Stefanowski J. Rough classification with valued closeness relation[A]. New Approaches in classification and Data Analysis[C]. 1994.482~489.
  • 5Su Zhong, Li Stan, Zhang Hong-Jiang. Extraction of Feature Subspaces for Content-based retrieval using relevance feedback[A]. ACM Multimedia[C]. 2001.98~106.
  • 6Padmini S, Miguel E R, Donald H K, et al. Vocabulary mining for information retrieval: rough sets and fuzzy sets[J]. Information Processing and Management, 2001,37(1):15~38.
  • 7Walczak B, Massart D L. Rough sets theory[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 47(1):1~16.
  • 8Ruo Y, Huang T S, Mechrotra S. Content-based image retrieval with relevance feedback in MARS[A], Proc ICIP97[C].1997.815~818.
  • 9朱兴全,张宏江,刘文印,吴立德.iFind:一个结合语义和视觉特征的图像相关反馈检索系统[J].计算机学报,2002,25(7):681-688. 被引量:34

二级参考文献4

  • 1Cox I J,Miller M L,Minka T P et al.The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments[].IEEE Transactions on Image Processing.2000
  • 2Salton G,McGill M J.Introduction to Modern Information Retrieval[]..1983
  • 3Zhu X Q,Zhang H J,HU C H et al.A new query refinement and semantic integrated image retrieval system with semi -automatic annotation scheme[].Journal of Electrocardiology.2000
  • 4Lee C,Ma W Y,Zhang H J.Information embedding based on user ’s relevance feedback for image retrieval[]..1998

共引文献33

同被引文献17

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2李鹏杰,杨树元.DCT域中MPEG7主色描述符的提取[J].电子与信息学报,2004,26(11):1693-1699. 被引量:5
  • 3袁顺波,董文鸳.新世纪图书情报界图像检索研究总况探析——LISA数据库收录文献计量分析[J].图书情报工作,2005,49(9):40-43. 被引量:30
  • 4Rocchio J J.Relevance Feedback in Information Retrieval[M].Salton G.The SMART Retrieval System:Experiments in Automatic Document Processing.Prentice-Hall,1971.
  • 5Rui Y,Huang T S,Ortega M,et al.Relevance Feedback:A Power Tool in Interactive Content-based Image Retrieval[J].IEEE Trans.on Circuits and System for Video Tech.,1998,8(5):644-655.
  • 6Rui Y,Huang T S.A Novel Relevance Feedback Technique in Image Retrieval[C].Proc.of ACM Multimedia,Oriando,1999:60-70.
  • 7MacArthur S D,Brodley C E,Shyu C R.Relevance Feedback Decision Trees in Content-based Image Retrieval[C].Proc.of IEEE Workshop on Content-based Access of Image and Video Libraries,2000:68-72.
  • 8Laaksonen J,Koskela M,Oja E.PicSOM:Self-organizing Maps for Content-based Image Retrieval[C].Proceedings of International Joint Conference on Neural Networks,1999.
  • 9Qian F,Li M J,Zhang H J,et al.Alternating Feature Spaces in Relevance Feedback[J].Multimedia Tools Appl.,2003,21(1):35-54.
  • 10John G H,Kohavi R,Pfleger K.Irrelevant Features and the Subset Selection Problem[C].Proc.of the 11th International Conference on Machine Learning ICML,1994.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部