期刊文献+

飞行器多任务在线实时航迹规划 被引量:28

On-line Real-time Multiple-mission Route Planning for Air Vehicle
在线阅读 下载PDF
导出
摘要 针对不确定环境中的飞行器多任务航迹规划问题展开研究,提出了一种基于飞行路线图的两阶段航迹规划框架,航迹规划分成学习和查询两个阶段,环境信息和飞行器约束条件分阶段体现。在该框架下,通过采用一种混合多任务动态航迹规划方法,分别在稀疏路线图上实时搜索初始航迹和在精细路线图上启发式搜索后备航迹,能够在具有预先未知威胁、可变飞行任务的战场环境中实时生成三维航迹。 Among the many open issues of development of unmanned air vehicles (UAVs), route planning is paid extensively attention. But the focus is concentrated on the route-planning problem in known environments. In this paper, the route-planning problem of UAVs in uncertain and mission-adaptable environments is addressed with the proposal of a two-phase route-planning framework. The route planning process is split into two phases: the learning phase and the query phase. Environmental information and mission constraints of UAVs are integrated into the building roadmap and searching for routes. A hybrid route planner is adopted based on roadmap, which queries the initial route for UAV on the sparse roadmap and searching for the spare route on the fine roadmap with the help of the initial route. This planner can give 3D route for UAV in a dynamic and multiple-mission environment in real-time.
出处 《航空学报》 EI CAS CSCD 北大核心 2004年第5期485-489,共5页 Acta Aeronautica et Astronautica Sinica
基金 海军工程大学科学研究基金(HGDJJ03030)
关键词 无人飞行器 航迹规划 随机路线图 动态威胁回避 实时处理 Aircraft landing Learning systems Online searching Real time systems Transportation routes Unmanned vehicles
  • 相关文献

参考文献5

  • 1[2]Szczerba R J, Galkowski P, Clickstein I S, et al. Robust algorithm for algorithm for real-time route planning[J]. IEEE Trans Aerospace and Electronic System, 2000,36(5): 869-878.
  • 2[4]Nilsson N J. Artificial intelligence: a new synthesis[M]. San Francisco: Morgan Kaufmann,1998.
  • 3[7]Zheng C W, Ding M Y, Zhou C P. Real-time Route Planning for unmanned air vehicle with an evolutionary algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003,17(1): 63-81.
  • 4[8]Stentz A. The focused D* algorithm for real-time replanning[A]. Proceedings of the International Joint Conference on Artificial Intelligence[C]. 1995.
  • 5[9]Kavraki L, Svestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Trans Robot & Autom, 1996,12(4): 566-580.

同被引文献257

引证文献28

二级引证文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部