期刊文献+

BP网络及多元线性回归在长江堤防监测资料分析中的应用 被引量:2

Application of BP Nerual Networks and Multiple Regression in Processing Data of Safety Monitoring in Yangtze River Embankment
在线阅读 下载PDF
导出
摘要 为比较BP网络及多元线性回归方法在工程中的应用效果,采用这2种方法对长江重要堤防隐蔽工程典型监测断面的资料进行了分析。结果表明:2层的BP网络以及使用线性函数的3层BP网络与多元回归方法的预测效果基本一致,能够满足实际工程需要;使用"S"型活跃函数的3层BP网络预测精度较差。 In order to compare their application efficiency two kinds of BP neural networks and multiple regression methods are used in processing data of safety monitoring at a typical cross、section in the Yangtze River embankment. The results show that the predicted values by two、layers BP neural networks and by three、layer one with linear element as hidden layer are basically in agreement with those found by multiple regression method. All methods can meet the practical engineering requirements, but less precision obtained from 3、layers BP neural network adopting S、type activity function.
出处 《长江科学院院报》 CSCD 北大核心 2004年第5期56-58,62,共4页 Journal of Changjiang River Scientific Research Institute
关键词 BP网络 多元回归 长江堤防 渗流 安全监测 BP neural networks multiple regression Yangtze River embankment seepage safety monitoring
  • 相关文献

同被引文献25

  • 1刘德忠,王湛.微滤膜过滤过程中比阻的研究进展[J].膜科学与技术,2005,25(5):63-68. 被引量:8
  • 2马福恒,向衍,吴中如.土石坝渗流警兆指标体系及拟定方法研究[J].人民黄河,2007,29(3):64-65. 被引量:6
  • 3Wang Zhan(王湛),Zhou Chong(周翀).Foundation of Membrane Separation Technology(膜分离技术基础).Beijing:Chemical Industry Press,2006:225-230,245
  • 4Xu Zhenliang(许振良),Ma Bingrong(马炳荣).Microfiltration Technology and Apply(微滤技术与应用).Beijing:Chemical Industry Press,2005:7-9
  • 5Dornier M,Decloux M,Trystram G,Lebert A.Dynamic modeling of crossflow microfiltration using neural networks.J.Membr.Sci.,1995,98 (1/2):263-273
  • 6Piron E,Latrille E,Rene F.Application of artificial neural networks for crossflow microfiltration modeling:"black -box"and semi-physical approaches.Comput.Chem.Eng.,1997,21 (2):1021-1030
  • 7Hamachi M,Cabassud M,Davin A.Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks.Chem.Eng.Process,1999,38(3):203-210
  • 8Meyer F,Gehmlich I,Gorak A.Analysis and simulation of complex interactions during dynamic microfiltration of Escherichia coli suspensions.Biotechnol.Bioeng.,1998,59(1):189-202
  • 9Goloka B S,Chittaranjan R.Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms.J.Membr.Sci.,2006,283(1/2):147-157
  • 10Fu Rongqiang,Xu Tongwen,Pan Zhongxiao.Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network.J.Membr.Sci.,2005,251 (1/2):137-144

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部