期刊文献+

基于聚类分析和支持向量机的布匹瑕疵分类方法 被引量:6

Fabric Defect Classification Based on Cluster Analysis and Support Vector Machine
在线阅读 下载PDF
导出
摘要 提出一种基于聚类分析和支持向量机(SVM)的布匹瑕疵分类方法.该方法充分利用瑕疵的几何特征,首先使用迭代自组织数据分析技术算法(ISODATA)对其进行聚类,在聚类形成的子空间内再根据瑕疵的纹理特征利用SVM进行分类.根据布匹瑕疵的特点提出一种新的几何特征,并使用各类瑕疵的几何特征均值作为初始聚类中心,提高ISODATA算法的聚类效果.实验表明,该方法有效地提高了分类准确性,降低了训练的复杂度,分类准确率可达90%. Presents an efficient method of fabric defect classification based on cluster analysis and support vector machine (SVM). The iterative self-organizing data analysis technique algorithm(ISODATA) is applied to cluster the defects,SVM is then used to classify each cluster. The paper presents a new geometric feature according to the characteristics of fabric defects, and use the mean geometric feature value of each defect class as the initial clustering center to improve the result of clustering. Experimental results show that the method improves the precision of classification effectively and reduces the complexity in training. The overall classification precision reaches 90%.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2004年第8期687-690,共4页 Transactions of Beijing Institute of Technology
基金 中国纺织品进出口总公司资助项目(HK0109-05)
关键词 瑕疵分类 聚类 支持向量机 特征提取 defect classification clustering support vector machine feature extraction
  • 相关文献

参考文献8

  • 1[1]Kumar A. Neural network based detection of local textile defects [J]. Pattern Recognition, 2003,36:1645-1659.
  • 2[2]Brzakovic D, Vujovic N. Designing a defect classification systems: A case study [J]. Pattern Recognition, 1996,29(8) :1041-1419.
  • 3[3]Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 4[4]Haralick R, Shanmugam K, Dinstein I. Textural features for image classification [J]. IEEE Transactions on Systems, Man, and Cybernetics,1973, SMC-3(6) :610-621.
  • 5[5]Unser M, Ade F. Feature exatraction and decision procedure for automated inspection of textured materials [J]. Pattern Recognition, 1984 (2): 181 -191.
  • 6[7]Dumm J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. Journal of Cybernetics, 1973,3 (1): 32 -57.
  • 7[9]Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998,2(2): 1-47.
  • 8[10]Zhang Xuegong. Using class-center vectors to build support vector machines [A]. Proceedings of NNSP'99[C]. [s.1.] :IEEE Inc., 1999.3-11.

同被引文献50

  • 1杨晓元,王志刚,王育民.支持向量机在图像隐秘检测中的应用[J].西安电子科技大学学报,2005,32(3):457-459. 被引量:3
  • 2王丽君,杨宜禾,赵亦工,向健勇.分形理论在空中目标识别中的应用[J].红外与毫米波学报,1996,15(4):267-270. 被引量:2
  • 3刘显贵,陈志新.基于核主元分析的支持向量机识别方法研究[J].微计算机信息,2006(09S):304-306. 被引量:6
  • 4Chang C C, C J Lin. A practical guide to support vector classification. Available at http://www.csie.ntu.edu.tw/-cjlin/papers.
  • 5H.Y.T.Ngan, Grantham K.H.Pang. Wavelet based methods on patterned fabric defect detection.Pattern Recgniton,2005,28:559-576
  • 6Kumar, A., Pang, G. Defect detection in textured materials using optimized fihers,IEEE Trans Systems, Man and Cyber. Part B: Cybernetics 2002, 32(5): 553-570.
  • 7Buciu I, Kotropoulos C, Pitas I. On the stability of support vector machines for face detection. Image Processing, 2002 Ⅴ(3): 121-124.
  • 8Zhang B F, Su J S, Xu X A. Class-Incremental Learning Method for Multi-Class Support Vector Machines in Text Classification[C]. ICMLC 2006:2581 - 2585.
  • 9Chang C C, C J Lin (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/ _cjlin/libsvm.
  • 10Sari-Sarraf H, Goddard J S. Vision Systems for On-loom Fabric Inspection[ J]. IEEE Trans on Ind Appl, 1999(35) : 1252- 1259.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部