期刊文献+

影响阔叶红松林土壤CO_2排放的主要因素 被引量:17

Important factors controlling CO_2 emission rates from forest soil.
在线阅读 下载PDF
导出
摘要 采用静态封闭箱式技术对长白山阔叶红松林土壤CO2 的排放通量进行 1年的观测 ,并通过多元回归分析了土壤CO2 排放速率与 5个环境因子间的关系。结果表明 ,阔叶红松林土壤CO2 排放与表层无凋落物的土壤CO2 排放速率在测定年度内具有相同的季节变化趋势。在不同的月份中 ,以 7月份最高 ,2月份最低 ;在夏季 18∶0 0为土壤日CO2 排放的最高峰 ;土壤CO2 排放速率与 5个环境因子进行多元回归的结果显示 :林地土壤CO2 排放速率与地表温度和地下 2 0cm土壤湿度呈显著正相关。根据气象资料推算 ,阔叶红松林的年凋落物和土壤CO2排放通量分别为 2 80 4 gCO2 ·m-2 ·a-1和 3911gCO2 ·m-2 ·a-1。阔叶红松林凋落物排放CO2年通量占土壤林地CO2 排放总量的 2 8%。 The soil CO 2 emission fluxes in two treatments in the broad-leaved & Korean pine (Pinus koreansis) forest of Changbai Mountain were evaluated with closed static chamber technique. The results showed that there were similarly seasonal variation trends for soil CO 2 emission rates in soil and litter-free soil. The maximum soil CO 2 emission was in July and the minimum was in February. In summer the peak for diurnal CO 2 emission occurred at 14∶00~18∶00 p.m. Effects of 11 environmental factors on soil CO 2 emission fluxes were examined by multivariate analysis of variance. Results showed that soil CO 2 emission rate was positively correlated to the temperature at 0 cm depth and soil moisture at 20 cm depth in the broad-leaved & Korean pine forest. The annual soil respiration amount was estimated as 3?911 g CO 2· m -2·ya -1 for soil with litters and 2?804 g CO 2·m -2·yr -1 for litter-free soil respectively. CO 2 emission amounting from the litters accounted for 28% of total soil CO 2 emission.
出处 《生态学杂志》 CAS CSCD 北大核心 2004年第5期24-29,共6页 Chinese Journal of Ecology
基金 国家重点基础研究发展规划项目(G1999043407) 中国科学院知识创新工程项目(KZ-CX-SW-01-01B-10) 国家自然科学基金资助项目(30271068)
关键词 静态箱法 土壤CO2排放 阔叶红松林 closed static chamber, soil CO 2 emission, broad-leaved Korean pine forest.
  • 相关文献

参考文献13

  • 1[7]Gupta SR, Singh JS. 1981. Soil respiration in tropical grassland [J]. Soil Biol. Biochem . , 13:261~268.
  • 2[8]Hutchinson GL, Davidson EA. 1993. Processes for production and consumption of gaseous nitrogen oxides in soil [A]. In: Harper LA.eds. Agricultural Ecosystem Effects on Trace Gases and Climate Change [C]. Madison, WI:ASA Spec. Publ. ,55:79~93.
  • 3[9]Kucera C, Kirlcham D. 1971. Soil respiration studies in tallgrass prairie in Missouri [J]. Ecology, 52: 912~915.
  • 4[10]Liebig MA, Doran JC, Gardner JC. 1996. Evaluation of a field test kit for measuring selected soil quality indicators [J]. Agron.J., 88(4): 683~ 686.
  • 5[11]Moore TR, Dalva M. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peat land soils [J] .J. Soil Sci., 44:651~ 664.
  • 6[12]Moore TR, Knowles R. 1989. The influence of water table levels on methane and carbon dioxide emissions from peat land soils [J]. Can. J. Soil Sci. ,69:33~38.
  • 7[13]Pacala SW, Hurtt GC, Baker D, et al. 2001. Consistent land-and atmosphere-based U. S. Carbon sink estimates [J]. Science., 292:2316~2319.
  • 8[14]Robert ES, Keith VC. 1984. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska [ J ]. Can. J. For.Res., 15:97~ 106.
  • 9[15]Schulze ED, Lloyd J, Kelliher FM, et al. 1999. Productivity of forest in the Eurosiberia boreal region and their potential to act as a carbon sink-a synthesis [J]. Global Change Biol., 5:703~722.
  • 10[16]Singh JS, Gupa SR. 1977. Plant decomposition and soil respiration in terrestrial ecosystems[ J ]. Bot. Rev., 43: 449~ 528.

同被引文献317

引证文献17

二级引证文献372

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部