摘要
在电磁场数值计算中常常需要采用插值方法计算任意位置处的电位和场强。本文采用满足Laplace方程的多项式作为插值函数 ,以使插值所得的电位亦满足Laplace方程 ,从而得到了较为精确的插值结果。本文提出通过旋转坐标系来调整插值点的坐标 ,使得各插值点的坐标在各坐标轴方向上均匀分布 ,以进一步提高插值计算的精度。计算结果表明该方法在避免系数矩阵的奇异性和提高插值结果的精度上均较传统插值方法有相当的改善。
In the numeric calculation of the potential and electric field at an arbitrary point, the interpolation method is often used. Polynomials that satisfy the Laplace equation are proposed for interpolation to make the interpolated potential also satisfy the Laplace equation. Consequently the interpolated potential and electric field are more accurate. Through rotating the coordinate system to make the interpolation points evenly distributed in each direction, a better interpolation result can be achieved. Calculation indicates that the method works well in avoiding singularity of the coefficient matrix and in improving the interpolation result.
出处
《电子器件》
CAS
2004年第2期268-273,共6页
Chinese Journal of Electron Devices
关键词
电磁场计算
Laplace多项式
插值
坐标系旋转
Eelectromagnetic field calculation
Laplace polynomials
coordinate system rotating