期刊文献+

电磁场计算中的Laplace插值函数

Laplace Polynomials in Electromagnetic Field Calculation
在线阅读 下载PDF
导出
摘要 在电磁场数值计算中常常需要采用插值方法计算任意位置处的电位和场强。本文采用满足Laplace方程的多项式作为插值函数 ,以使插值所得的电位亦满足Laplace方程 ,从而得到了较为精确的插值结果。本文提出通过旋转坐标系来调整插值点的坐标 ,使得各插值点的坐标在各坐标轴方向上均匀分布 ,以进一步提高插值计算的精度。计算结果表明该方法在避免系数矩阵的奇异性和提高插值结果的精度上均较传统插值方法有相当的改善。 In the numeric calculation of the potential and electric field at an arbitrary point, the interpolation method is often used. Polynomials that satisfy the Laplace equation are proposed for interpolation to make the interpolated potential also satisfy the Laplace equation. Consequently the interpolated potential and electric field are more accurate. Through rotating the coordinate system to make the interpolation points evenly distributed in each direction, a better interpolation result can be achieved. Calculation indicates that the method works well in avoiding singularity of the coefficient matrix and in improving the interpolation result.
作者 顾伟 吴杰
出处 《电子器件》 CAS 2004年第2期268-273,共6页 Chinese Journal of Electron Devices
关键词 电磁场计算 Laplace多项式 插值 坐标系旋转 Eelectromagnetic field calculation Laplace polynomials coordinate system rotating
  • 相关文献

参考文献2

  • 1Froberg C E.Introduction to Numerical Analysis[M].Addison-Wesley Dahlquist G and Bjorck.Numerical Methods Prentice-Hall,1974.
  • 2Harthoorn R.3D-Interpolation Employing Laplace Polynomials TVR-45-95-RH/D010[D] 1995-1-13.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部