期刊文献+

次同步谐振中的分歧分析 被引量:5

BIFURCATION ANALYSIS IN SUB-SYNCHRONOUS RESONANCE
在线阅读 下载PDF
导出
摘要 应用Lyapunov-Schmidt方法对高维非线性向量场进行了约化,采用Hopf分歧理论分析了次同步谐振中出现的分歧现象。利用数值微分法求出了曲率系数对分歧参数的灵敏度,从而可预见分歧轨道稳定性态的变化。研究表明:不同的串联补偿度、不同的参数可能导致不同类型的分歧。在某一串联补偿度上,出现的次同步谐振可能被轨道稳定的极限环所取代。随着串联补偿度的升高,次同步谐振可能出现于虚轴左侧邻域。换句话说,在另一较高的串联补偿度上,轨道不稳定的极限环将从原来渐近稳定平衡点上分岔出来,系统的稳定性态将被改变。 On the basis of the Hopf bifurcation theory, the bifurcation phenomenon occurring in sub-synchronous resonance is analyzed in the paper in terms of Lyapunov-Schmidt algorithm by which the high dimension nonlinear vector fields are reduced. The sensitivity of the bifurcation parameter to the curvature coefficient has also been investigated by using the numerical differential algorithm, which give a way to predict the dynamic characteristic variation of the bifurcation orbit. The investigation results show that different series capacitor compensation level or different system parameters may lead to different kind of bifurcations. At a given series compensation level, the original sub-synchronous resonance may change into stable limit cycle. With increase of the series compensation level, the sub-synchronous resonance may occur at the left side neighborhood of the imaginary axe. In other words, the unstable limit cycle will be bifurcated from the original asymptotical stable equilibrium point at another higher series compensation level, and the system dynamics will change.
机构地区 东北电力学院
出处 《电力系统自动化》 EI CSCD 北大核心 2004年第12期24-27,39,共5页 Automation of Electric Power Systems
关键词 次同步谐振 数值微分算法 Lyapunov-Schmidt方法 分歧 高维非线性向量场 sub-synchronous resonance numerical differential algorithm Lyapunov-Schmidt method bifurcation high dimension nonlinear vector fields
  • 相关文献

参考文献10

二级参考文献22

  • 1邓集祥,张崇见,边二曼,刘德斌.灾变理论在多机电力系统暂态稳定分析中的应用[J].中国电机工程学报,1995,15(3):158-165. 被引量:7
  • 2[美]Leon Lapidue George Pinder F.科学和工程中的偏微分方程[M].北京:煤炭工业出版社,1985..
  • 3Lapidue L Pinder G F.科学和工程中的偏微分方程[M].北京:煤炭工业出版社,1985..
  • 4施妙根 顾厢珍.科学和工程计算基础[M].北京:清华大学出版社,1995..
  • 5施妙根 顾厢珍.科学和工程计算基础[M].北京:清华大学出版社,1995..
  • 6Guckenheimer, Holmes P. Nonlinear oscillations, dynamical systems and bifercations of vector fields[M].Springer-Verlag,New York, 1983.
  • 7Ji W. Venkatasubramanian V. Center manifold computations in bifercation analysis of large systems such as the power system[J]. Proc.American control conference, Washington, June,1996,1573-1579.
  • 8Lin Chinming, Vittal V, Kliemann W H, et al. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields[C]. IEEE PES Summer Meeting, 95 SM522-3, PWRS July 1995.
  • 9Jang G, Vittal V, Kliemann W, Effect of nonlinear modal interavtion on control performance: Use of normal forms technique in control design. Part Ⅰ: General theory and precedure[J]. IEEE Trans PWRS, 1998,13(5): 401-413.
  • 10Zhu S, Vittal V, Kliemann W, Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields[J]. IEEE Trans PWRS, 2001,16(3): 444-455.

共引文献130

同被引文献53

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部