摘要
We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.
We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.
基金
Supported in part by National Natural Science Foundation of China Grant (No.10131040).The author also thanks the referee's constructive suggestions.