期刊文献+

Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims 被引量:19

Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims
原文传递
导出
摘要 We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation. We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.
作者 ShigePeng
机构地区 InstituteofMathematics
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第2期191-214,共24页 应用数学学报(英文版)
基金 Supported in part by National Natural Science Foundation of China Grant (No.10131040).The author also thanks the referee's constructive suggestions.
关键词 option pricing measure of risk backward stochastic differential equation nonlinear potential theory nonlinear Markov property dynamic programming principle option pricing measure of risk backward stochastic differential equation nonlinear potential theory nonlinear Markov property dynamic programming principle
  • 相关文献

参考文献1

同被引文献49

引证文献19

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部