期刊文献+

CONVEXIFICATION AND CONCAVIFICATION METHODS FOR SOME GLOBAL OPTIMIZATION PROBLEMS 被引量:3

CONVEXIFICATION AND CONCAVIFICATION METHODS FOR SOME GLOBAL OPTIMIZATION PROBLEMS
原文传递
导出
摘要 In this paper, firstly, we propose several convexification and concavification transformations to convert a strictly monotone function into a convex or concave function, then we propose several convexification and concavification transformations to convert a non-convex and non-concave objective function into a convex or concave function in the programming problems with convex or concave constraint functions, and propose several convexification and concavification transformations to convert a non-monotone objective function into a convex or concave function in some programming problems with strictly monotone constraint functions. Finally, we prove that the original programming problem can be converted into an equivalent concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem. Then the global optimal solution of the original problem can be obtained by solving the converted concave minimization problem, or reverse convex programming problem or canonical D.C. programming problem using the existing algorithms about them.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第3期421-436,共16页 系统科学与复杂性学报(英文版)
基金 This research is supported by the National Natural Science Foundation of China(Grant 10271073).
关键词 Global optimal solution concave minimization reverse convex programmingproblem D.C. programming problem CONVEXIFICATION CONCAVIFICATION 全局最优解 凹极小值 反转凸面程序 D.C.程序设计 凸化 凹化 严格单调函数
  • 相关文献

参考文献18

  • 1J. Barhen, V. Protopopescu and D. Reister, TRUST: A deterministic algorithm for global optimization, Science, 1997, 276: 1094-1097.
  • 2R. Ge, A filled function method for finding a global minimization of a function of several variable,Mathematical Programming, 1990, 46: 191-204.
  • 3R. Horst, Deterministic methods in constrained global optimization: Some recent advances and new fields of application, Naval Res. Logist., 1990, 37: 433-471.
  • 4A. V. Levy and A. Montalvo, The tunnelling algorithm for the global minimization of functions,SIAM J. Sci. & Star. Comput., 1985, 6: 15-17.
  • 5P. M. Pardalos and J. B. Rosen, Constrained Global Optimization: Algorithms and Applications,Springer-Verlag, Berlin.
  • 6A. H. G. Rinnoy Kan and Timmer, G. T., Stochastic global optimization methods, Part Ⅰ: Clustering methods, Math. Program., 1987, 39: 27-56.
  • 7A. H.G. Rinnoy Kan and G. T. Timmer, Stochastic global optimization methods, Part Ⅱ: Multilevel methods, Math. Program., 1987, 39: 57-78.
  • 8D.Cvijovic, and J.Klinows-ki, Taboo search: An approach to the multiple minima problem, Science,1995, 267: 664-666.
  • 9H. PI Benson, Deterministic algorithm for constrained concave minimization: A unified critical survey, Naval Res. Logist., 1996, 43: 765-795.
  • 10K. L.A. Hoffman, A method for globally minimizing concave functions over convex set, Math.Proqram., 1981, 20: 22-23.

同被引文献12

  • 1吴至友.非线性规划的单调化方法[J].重庆师范大学学报(自然科学版),2004,21(2):4-7. 被引量:6
  • 2全靖,吴至友.单调优化的一种新的凸化、凹化方法[J].重庆师范大学学报(自然科学版),2004,21(4):10-12. 被引量:3
  • 3Benson H P. Deterministic Algorithm for Constrained Concave Minimization: A Unified Critical surrey[J]. Naval Reslogist, 1996(43) :765 - 795.
  • 4Horst R, Tuy H. Global Optimization Deterministic Approaches [M]. NewYork: Springer- Verlag, Heidelberg, 1993.
  • 5Tuy H. Convex Analysis and Global Optimization[M]. London: Kluwer Academic Publishers, 1998.
  • 6Wu Z Y,Lee H W J,Yang X M.A class of convexification and concavification methods for non-monotone Optimization problems[J].Optimization,2005,54(6),605-625.
  • 7Li D,Sun X L,Gao F.Convexification,concavification in global optimization[J].Annals of Optimization Research,2001,105:213-226.
  • 8Wu Z Y,Bai F S,Zhang L S.convexification and concavification for a general class of global optimization problems[J].Journal of Global Optimization,2005,31:45-60.
  • 9何颖.一类全局优化问题的新的凸化、凹化法[J].长春大学学报,2008,18(2):1-6. 被引量:4
  • 10李博,周伊佳.全局最优化问题的凸凹化法[J].青岛科技大学学报(自然科学版),2010,31(3):321-324. 被引量:2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部