期刊文献+

NONMONOTONIC TRUST REGION PROJECTED REDUCED HESSIAN ALGORITHM WITH TWO-PIECE UPDATE FOR CONSTRAINED OPTIMIZATION 被引量:1

NONMONOTONIC TRUST REGION PROJECTED REDUCED HESSIAN ALGORITHM WITH TWO-PIECE UPDATE FOR CONSTRAINED OPTIMIZATION
原文传递
导出
摘要 This paper proposes a two-piece update of projected reduced Hessian algorithmwith nonmonotonic trust region strategy for solving nonlinear equality constrained optimizationproblems. In order to deal with large problems, a two-piece update of two-side projected reducedHessian is used to replace full Hessian matrix. By adopting the Fletcher's penalty function as themerit function, a nonmonotonic trust region strategy is suggested which does not require the meritfunction to reduce its value in every iteration. The two-piece update of projected reduced Hessianalgorithm which switches to nonmonotonic trust region technique possesses global convergence whilemaintaining a two-step Q-superlinear local convergence rate under some reasonable conditions.Furthermore, one step Q-superlinear local convergence rate can be obtained if at least one of theupdate formulas is updated at each iteration by an alternative update rule. The numerical experimentresults are reported to show the effectiveness of the proposed algorithm.
作者 ZHUDetong
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第3期332-348,共17页 系统科学与复杂性学报(英文版)
基金 The author gratefully acknowledges the partial supports of the National Science Foundation of China Grant (10071050) Science Foundation of Shanghai Technical Sciences Committee Grant (02ZA14070) Science Foundation of Shanghai Education Committee Grant
关键词 trust region strategy nonmonotonic technique fletcher's penalty function two-piece update superlinear convergence 非单调技术 信任区域工程 弗莱彻处罚函数 超线性收敛 两块更新 Hessian算法
  • 相关文献

参考文献15

  • 1J.Nocedal and M.L.Overton,Projected Hessian updating algorithms for nonlinearly constrained optimization,SIAM,Numer.Anal.,1985,22:821—850.
  • 2C. B. Gurwitz, Local convergence of two-piece update of a projected Hessian matrix, SIAM J.Optim., 1994, 4: 461-485.
  • 3J. E. Jr. Dennis and J. J. More, Quasi-Newton methods, motivation and theory, SIAM REv., 1977,19: 46-89,.
  • 4R. H. Byrd, R. B. Schnable, and G. A. Shultz, A trust region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal., 1987, 24: 1152-1170.
  • 5M.R.Celis, J.E.Dennis, and R.A.Tapia, A trust region strategy for nonlinear equality constrained optimization, In P. Boggs et al (ed.): Numerical Optimization, SIAM Philadelphia, 71-82, 1985.
  • 6M.J.D.Powell and Y.Yuan, A recursive quadratic programming algorithm that uses differentiable exact penalty functions, Mathematical Programming, 1986, 35: 265-278.
  • 7J. Zhang and D. Zhu, A convergence secant method for constrained optimization, Japan J. Indust.Appl. Math., 1990, 11: 265-288.
  • 8L. Grippo, F. Lampariello and S. Lucidi, A nonmonotonic llne search technique for Newton's methods, SIAM Journal on Numerical Analysis, 1986, 23: 707-716.
  • 9N. Y. Deng, Y. Xiao and F. J. Zhou, A nonmonotonic trust region algorithm, Journal of Optimization Theory and Applications, 1993, 76: 259-285.
  • 10R. H. Byrd, Robust trust region methods for constrained optimization, in Proc. Third SIAM Conference on Optimization, Houston, TX, May, 1987.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部