期刊文献+

一类多维连续线性系统的混沌反控制 被引量:7

Chaotic Anticontrol of a Class of Multi-Dimensional Uninterrupted Linear Systems
在线阅读 下载PDF
导出
摘要 针对状态矩阵具有互不相等负特征值的多维连续线性系统,提出了一种基于采样数据的混沌反控制方法·该方法首先将连续系统离散化,然后利用离散系统混沌反控制方法设计状态反馈控制器,使原来的连续系统产生Li Yorke意义下的混沌·所设计的控制器以给定的采样周期对连续系统进行采样,由采样数据构造控制器,在每个采样周期内保持控制项不变·并给出了混沌反控制律的推导及控制器参数的设计方法·数值仿真结果证实了该方法的有效性和可行性· An anticontrol method for a class of multi-dimensional uninterrupted linear systems with state matrix featured with different negative eigenvalues is proposed by using sampled data. The method makes the given multi-dimensional uninterrupted linear systems in such chaos as what Li and Yorke meant by discretizing it then designing a state feedback controller in accordance to an anticontrol method for a discrete time systems. The system state variables are sampled at a given sampling rate and they are used to construct a discrete time state feedback controller to make the continuous-time linear system chaotic. During each sampling period, the feedback control input remains unchanged. The law of chaotic anticontrol is derived with a systematic procedure of design parameters provided to the feedback controller. Simulation results verified the effectiveness of the proposed method.
作者 黄玮 张化光
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期727-730,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60274017) 教育部博士点基金资助项目(20011045023)
关键词 混沌控制 反控制 状态反馈 连续系统 采样数据 chaotic control anticontrol state feedback uninterrupted linear system sampled data
  • 相关文献

参考文献12

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990,64(11):1196-1199.
  • 2Pyragas K. Continuous control of chaos by self-feedback[J]. Phys Lett A, 1992,170(6):421-428.
  • 3Yang W, Ding M, Mandell A J, et al. Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders[J]. Phys Rev E, 1995,51(1):102-110.
  • 4Chen G, Lai D. Feedback anticontrol of discrete chaos[J]. Int J Bifurcation and Chaos, 1998,8(7):1585-1590.
  • 5Zheng Y, Chen G. Single-state feedback chaotification of discrete dynamical systems[J]. Int J Bifurcation and Chaos, 2004,14(1):279-284.
  • 6Wang X F, Chen G. Chaotification via arbitrarily small feedback controls: theory, method, and applications [J]. Int J Bifurcation and Chaos, 2000,10(3):549-570.
  • 7Yang L, Liu Z, Chen G. Chaotifying a continuous-time system via impulsive input[J]. Int J Bifurcation and Chaos, 2002,12(15):1121-1128.
  • 8Wang X F, Chen G, Yu X. Anticontrol of chaos in continuous-time systems via time-delay feedback[J]. Chaos, 2000,10(4):771-779.
  • 9Konishi K. Making chaotic behavior in damped linear harmonic oscillator[J]. Phys Lett A, 2001,284(2,3):85-90.
  • 10王智良,张化光.基于非线性反馈控制的高维混沌系统同步[J].东北大学学报(自然科学版),2002,23(2):126-129. 被引量:4

二级参考文献15

  • 1[1]Carroll T L,Pecora L M. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64:821.
  • 2[2]Chen G, Dong X. From chaos to order: methodologies, perspectives, and applications[M]. Singapore: World Sicentific, 1998.172.
  • 3[3]Bernardo M. An adaptive approach to control and synchronization of continuous-time chaotic systems[J]. Int J Bifur Chaos,1996,6:455.
  • 4[4]Ge S S, Wang C, Lee T H. Adaptive backstepping control of a class of chaotic systems[J]. Int J Bifurcation Chaos,2000,8:1149.
  • 5[5]Femat R,Jose A R,Guiliermo F A. Adaptive synchronization of hign-order chaotic systems:a feedback with low-order parametrization[J]. Physica D, 2000,139:231.
  • 6[6]Hegazi A S,Agiza H N,El Dessoky M M. Synchronization and adaptive synchronization for nuclear spin generator system chaos[J]. Solitons and Fractals, 2001,12:1091.
  • 7[7]Fah C C, Tung P C. Controlling chaos using differential geometric method[J]. Phys Rev Lett, 1995,75(16):2952.
  • 8[8]Liaw Y M, Tung P C. Extended differential geometric method to control a noisy chaotic system[J]. Phys Lett A, 1996,222:163.
  • 9[11]Wiggins S. Nonlinear introduction to nonlinear dynamical systems and chaos[M]. New York: Springer-Verlag, 1990.133.
  • 10[12]Isdori A. Nonlinear control systems[M]. Berlin: Spring er-Verlag, 1989.184.

共引文献8

同被引文献100

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部