期刊文献+

PID控制器的优化设计 被引量:6

Optimization research and design for PID controller
在线阅读 下载PDF
导出
摘要 为使PID控制器同时具有给定值跟踪和抑制干扰两个方面的最佳特性,提出了PID控制器优化设计方法.笔者设计了给定值补偿型I-PD控制器,其结构简单,便于掌握,易于实现,可以实现系统的最优控制,特别适用于串级控制中级数较多的系统.在深入研究反馈型2自由度PID控制器的基础上,增加了前馈补偿器,有效地抑制了扰动,为改善给定值跟踪特性,在前馈位置上增加一个微分负前馈环节,仿真结果表明:该控制器具有抗干扰能力强,实时性好,调节时间短、超调量小等特点,提高了系统的控制性能. In order to achieve the best characteristics of the setting value tracking and the disturbance rejection,a PID controller optimization design method is put forward.The settling value compensation PID controller is designed,whose simple structure makes it easy to master and achieve optimization control.This is especially applicable to the system of more series.By further research a feed-forward compensator has been added to feedback multi-variance PID controller in order to restrain the disturbance effectively.To improve the characteristic of the setting value tracking,a differential negative feed-forward link is added to the position of feed-forward.Simulation results show that this controller can improve the control function of the system,and has the properties of strong anti-disturbance,good real time,short regulating time,small exceeded adjusting amount etc.
出处 《沈阳建筑工程学院学报(自然科学版)》 2004年第3期232-234,共3页 Journal of Shenyang Architectural and Civil Engineering University(Nature Science)
基金 建设部基金资助项目(03-2-117)
关键词 控制器 优化 跟踪 干扰 controller optimization tracking disturbance
  • 相关文献

参考文献6

二级参考文献16

  • 1李界家,丛百章,赵永强.用STD总线工业控制机控制铝电解过程[J].仪表技术与传感器,1996(6):31-33. 被引量:7
  • 2王勇骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998:303-305.
  • 3Dovan T, Dillon T S, Berger C S. "A Microcomputer Based On-Line Identification Approach to power System Dynamic Modeling" [J]. IEEE Trans On Power Systems, Aug. 1987, 2(2): 529 - 536.
  • 4Thomas R J and Bih-yuan ku. "Approximations of power system dynamic load characteristics by artificial networks" [ A]. Proceedings of the 1^st international forum on Applications of Neural Networks to Power Systems[C]. Washington, 1991.
  • 5Cho H S, Park J K, Kim G W, et al." Power System Transient Stability Analysis Using a New Condensed Nearest Neighbor Rule for Kohonen Neural Network"[A]. ISAP'99[C]. Rio de Janeiro(brazil): 1999.
  • 6Alireza Khotanzad, Peng P, Marks R J." Short Term Peak Load Forecast Using a Neuro-Fuzzy Model" [A].ISAP' 99 [ C]. Rio de Haneiro(Brazil): 1999.
  • 7Srinivasan K, Robichaud Y, Rodgers G. "Load Response Coefficient Monitoring System: Theory and Field Experience"[J]. IEEE Trans. On Power Apparatus and System, Vol. PAS - 100 Aug. 1981: 3818 -3827.
  • 8Wprice W, Wirgan K A, EI-kady M A. "Load Modeling Power Flow and Transient Stabulity Computer Studies"[J]. IEEE Trans. On Power Systems, 1988,3(1): 180 - 187.
  • 9Papalexopoulos A D, Hesterberg T C. A Regression-Based Approach to Short-Term System Load Forecasting[J]. IEEE Tran. PWRS, 1990, 5(4): 1535 - 1644.
  • 10Brace M C, Schmidt J, Hadin M. Comparisie of the Forecasting Accuracy of Neural Networks with Other Established Techniques [ A ]. Proceedings of the fist International Forum on Applications of Neural Networks to power systems[C]. Seattle, 1991.

共引文献221

同被引文献51

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部