期刊文献+

具有噪声估计机制的偏差迭代图像复原 被引量:1

Restoration of discrepancy iterative images using mechanism for evaluating noise
在线阅读 下载PDF
导出
摘要 研究了Morozov偏差方程,将图像退化模型的Tikhonov正则化解构造Morozov偏差方程.用小波变换估计图像信号的噪声能量,并运用到Morozov偏差方程中,利用Morozov偏差原理迭代求取正则参数,从而得到正则化解.提出了一种具有噪声能量估计的偏差迭代图像复原正则化方法.实验表明:在图像信号噪声未知的情况下,该迭代方法的图像复原具有较快的计算收敛速度和较好的复原能力. Morozov discrepancy equation was investigated and formulated by Tikhonov regularization solution that was derived from the degraded image model.The image noise,as the knowledge a prior,was estimated by employing wavelet transform and the equation was modified.A novel method that seeks the optimal regularization parameter by iteration with the improved Morozov discrepancy equation was proposed.The experimental results show that under a lack of the noise information of the observed image the iterative converg...
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第11期59-61,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60572048)
关键词 图像复原 噪声估计 偏差原理 小波变换 image restoration noise estimation discrepancy principle wavelet transform
  • 相关文献

参考文献9

  • 1[1]Katsaggelos A.Digital image restoration[M].Berlin:Germany Springer-Verlag,1991.
  • 2陈春涛,黄步根,高万荣,陶纯堪.最大熵图像复原及其新进展[J].光学技术,2004,30(1):36-39. 被引量:6
  • 3[3]Kilmer M E.Choosing regularization parameters in iterative methods for ill-posed problems[J].SIAM J Matrix Anal Appl,2001,22(14):1 204-1 221.
  • 4[5]Morozov V A.Methods for solving incorrectly posed problems[M].New York:Springer-Verlag,1983.
  • 5[6]Sun X G,Jaggard D L.The inverse black-body radiation problem:A regularization solution[J].Journal of applied physics,1987,62(11):4 382-4 386.
  • 6[7]Kilmer M E.Choosing regularization parameters in iterative methods for ill-posed problems[J].SIAM J Matrix Anal Appl,2001,22(14):1 204-1 221.
  • 7[8]Morozov V A.On the rate of convergence for regularized solution[J].Numer Funct Anal Opti,1997,3(1):171-177.
  • 8曾三友,丁立新,康立山.A METHOD TO APPROACH OPTIMAL RESTORATION IN IMAGE RESTORATION PROBLEMS WITHOUT NOISE ENERGY INFORMATION[J].Acta Mathematica Scientia,2003,23(4):512-520. 被引量:2
  • 9[10]Kang M G,Katsaggelos A K.General choice of the regularization functional in regularized image restoration[J].IEEE Trans on image proc,1995,4(5):594-602.

二级参考文献26

  • 1Andrews H C, Hunt B R. Digital Image Restoration. Englewood Cliffs, N J: Prentice-Hall, Inc, 1977.
  • 2Hunt B R. The Application of Constrained least squares estimation to image restoration by digital comvuter. IEEE Trans, 1973, C-22(9): 805-812.
  • 3Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging. Dirac House, Temple Back, Bristol BSI 6BE, UK: Institute of Physics Publishing, 1998.
  • 4Katsaggelos A K. Digital Image Restoration. Berlin: Springer-Verlag, 1991.
  • 5Bertero M, Poggio T, Torte V. Ill-posed problems in early vision. Proc IEEE, 1988, 76(8): 869-889.
  • 6Wang Hau-San, Ling Guan. Application of evolutionary programming to adaptive regulaxization in imagere storation. IEEE Trails on Evolutionary Computation, 2000, 4(4):309-326.
  • 7Katsaggelos A K, Kang M G. Spatially adaptive iterative algorithm for the restoration of astronomical inlages. Int J Imaging Syst Technol, 1995,6(4):305-311.
  • 8Lagendijk R, Biemond J. Iterative Identification and Restoration of Images. Boston, MA: Kluwer Academic, 1991.
  • 9Qian W, Clarke L P. Wavelet-based neural network with fuzzy-logic adaptivity for nuclear image restoration. Proc IEEE, 1996, 84(10): 1458-1473.
  • 10Calvetti D, Keichel L, Sgallari F, et al. Regularizing Lanczos iteration method for undetermined Linear systems. J Comp Appl Math, 2000, 11(5): 101-120.

共引文献6

同被引文献14

  • 1张旗,梁德群,樊鑫,李文举.基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285. 被引量:32
  • 2吴显金,王润生.小波域噪声分布估计的自适应正则化图像恢复[J].计算机辅助设计与图形学学报,2006,18(4):502-506. 被引量:6
  • 3李淑霞,王汝霖,李春梅,许亮,李国新.基于噪声方差估计的小波阈值图像去噪新方法[J].计算机应用研究,2007,24(1):220-221. 被引量:17
  • 4Olsen S I. Estimation of noise in images.. An evaluation [J]. Graphical Models and Image Processing, 1993, 55(4):319-323.
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81.. 425-455.
  • 6Vattereli M, Kovacevic J. Wavelet and Subband coding [M]. Englewood Cliffs, NJ: Prentice Hall, 1995:385- 420.
  • 7Immerkaer J. Fast noise variance estimation [J]. Computer Vision and Image Understanding. 1996, 64(2): 300-302.
  • 8Shin D H, Park R H, S Yang. Block-based noise estimation using adaptive Gaussian filtering [J]. IEEE Transactions on Consumer Electronics, 2005, 51 (1) : 218-226.
  • 9Deng Julong. Control problems of grey system [J]. System and Control Letters, 1982, 1 (5):288-294.
  • 10Ma Miao, Tian Hongpeng, Hao chongyang. Image denoising using grey relational analysis in spatial domain [C]// Li Shipeng. Proceedings of the International Society for Optical Engineering on Visual Communications and Image Processing California: SPIE, 2005, 5960 : 335-342.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部