期刊文献+

基于多特征融合和集成学习的恶意代码检测研究 被引量:1

Research on malicious code detection based on multi-feature fusion and ensemble learning
在线阅读 下载PDF
导出
摘要 面对网络中日益增长的恶意代码,提出了一种基于多种特征融合和集成学习的恶意代码家族分类方法.收集了80类恶意代码家族的样本,共计31394个,分别提取了恶意代码样本的灰度纹理特征、字节熵直方图特征和应用程序编程接口(application programming interface,API)调用频率特征.融合多种特征,使用集成学习算法实现恶意代码家族的分类.实验结果表明,恶意代码特征融合后和集成学习中的Stacking策略结合取得96.72%的分类准确率,与其他分类方法相比,分类准确率得到了提升. Facing the increasing number of malicious codes in the network,a classification method of malicious code families based on multiple features fusion and ensemble learning is proposed.A total of 31394 samples of 80 types of malicious code families were collected,and the gray-scale texture features,byte entropy histogram features and frequency features of application programming interface(API)calls of malicious code samples were extracted.Multiple features were fused and the algorithms of ensemble learning were used to realize the classification of malicious code families.The experimental results show that the classification accuracy of 96.72%is achieved by combining the fusion features of malicious code with stacking strategy in ensemble learning.Compared with other classification methods,the classification accuracy of this method is improved.
作者 贾立鹏 王凤英 姜倩玉 JIA Lipeng;WANG Fengying;JIANG Qianyu(School of Computer Science and Technology,Shandong University of Technology,Zibo,Shandong 255049,China)
出处 《中国科技论文在线精品论文》 2021年第2期168-176,共9页 Highlights of Sciencepaper Online
基金 淄博市校城融合发展计划(2018ZBXC295)
关键词 计算机科学技术基础学科 网络安全 恶意代码 特征融合 集成学习 STACKING basic subject of computer science and technology network security malicious code feature fusion ensemble learning stacking
  • 相关文献

参考文献7

二级参考文献33

  • 1董志强,肖新光,张栗伟.编码心理学分析病毒同源性[J].信息安全与通信保密,2005(8):55-59. 被引量:9
  • 2李勇,左志宏.目标代码混淆技术综述[J].计算机技术与发展,2007,17(4):125-127. 被引量:10
  • 3瑞星.2013年中国信息安全报告[EB/OL].[2014-03.12].http://www.rising.tom.cn/2013aogao/2013baogao.pdf.
  • 4Park, Younghee.Fast malware classification by automated behavioral graph matching[C]//Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research,2010.
  • 5Kinable J, Kostakis O.Malware classification based on call graph clustering[J].Journal in Computer Virology,2011,7 (4) :233-245.
  • 6Kolter J Z,Maloof M A.Learning to detect and classify malicious executables in the wild[J].The Journal of Machine Learning Research, 2006,7 : 2721-2744.
  • 7Hu X, Chiueh T, Shin K G.Large-scale malware indexing using function-call graphs[C]//Proceedings of the 16th ACM Conference on Computer and Communications Security, 2009 : 611-620.
  • 8Bayer U, Comparetti P M.Scalable, behavior-based malware clustering[C]//NDSS, 2009 : 8-11.
  • 9Flake H.Structural comparison of executable objects[C]// Proceedings of the IEEE Conference on Detection of Intrusions,Malware and Vulnerability Assessment(DIMVA), 2004.
  • 10Dullien T, Rolles R.Graph-based comparison of executable objects(English version) [C]//SSTIC,2005 : 1-3.

共引文献117

同被引文献13

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部