期刊文献+

一种火灾图像自适应强光抑制算法

An adaptive bright light suppression algorithm for fire image
在线阅读 下载PDF
导出
摘要 在火灾图像的研究过程中,光照强弱常常会影响火灾图像的判别结果。当光照强烈时,图像受到强光干扰,甚至过曝光,会对后续的图像处理产生较大的影响。本文提出一种火灾图像自适应强光抑制算法,对HSV色彩空间中的V进行处理,通过中值滤波提取入射光分量,而后对其进行伽马自适应亮度校正,调整图像的亮度和对比度;MSRCR算法可对图像中受干扰区域进行颜色恢复,减少因过度曝光造成的图像颜色失真,使图像有更好的视觉效果。实验结果表明,本文算法可以有效提高受到强光干扰的图像的质量。 In the research process of fire image,light intensity often affects the discriminant result of fire images.When the light is strong and the image is interfered by strong light or even overexposure,and it will have a great impact on the subsequent image processing.The paper proposes an adaptive strong light suppression algorithm for fire image,which processes the V in HSV color space,extracts the incident light component through median filtering,and then the gamma adaptive brightness correction is carried out to adjust the brightness and contrast of the image.Then the MSRCR algorithm is used to restore the color of the disturbed area of the image to reduce the color distortion caused by overexposure,so that the image can have a better visual effect.Experimental results showthat the algorithm in this paper can effectively improve the image quality under strong light interference.
作者 官洪运 王亚青 缪新苗 井倩倩 张抒艺 GUAN Hongyun;WANG Yaqing;MIAO Xinmiao;JING Qianqian;ZHANG Shuyi(College of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《智能计算机与应用》 2020年第7期93-96,共4页 Intelligent Computer and Applications
关键词 图像处理 强光抑制 MSRCR算法 自适应 Image Processing Glare suppression MSRCR algorithm Adaptive
  • 相关文献

参考文献2

二级参考文献26

  • 1Artman H. Situation awareness and co-operation within and between hierarchical units in dynamic decision making[J].{H}ERGONOMICS,1999,(11):1404-1417.
  • 2Burt P J. Multiresolution image processing and analysis[M].{H}Berlin:Springer-Verlag,1984.6-35.
  • 3Li H,Manjunath B S,Mitra S K. Multisensor image fusion using the wavelet transform[J].{H}Graphical Models and Image Processing,1995,(3):235-245.
  • 4Daniel M M,Willsky A S. A multiresolution methodology for signal-level fusion and data assimilation with application to remote sensing[J].{H}PROCEEDINGS OF THE IEEE,1997,(1):164-180.
  • 5Dasarathy B V. Fuzzy evidential reasoning approach to target identity and state fusion in multisensor environments[J].{H}Optical Engineering,1997,(3):683-699.
  • 6Dubuisson M,Jain A K. Contour extraction of moving objects in complex outdoor scenes[J].{H}International Journal of Computer Vision,1995,(1):83-105.
  • 7Jeon B,Landgrebe D A. Decision fusion approach for multitemporal classification[J].{H}IEEE Transactions on Geoscience and Remote Sensing,1999,(3):1227-1233.
  • 8Mitianoudis N,Stathaki T. Pixel-based and region-based image fusion schemes using ICA bases[J].Information Fusion,2007,(2):131-142.
  • 9Piella G. A general framework for multiresolution image fusion:From pixels to regions[J].Information Fusion,2003,(4):259-280.
  • 10Goutsias J,Heijmans H J A M. Nonlinear multiresolution signal decomposition schemes-Part Ⅰ:Morphological pyramids[J].{H}IEEE Transactions on Image Processing,2000,(11):1862-1876.

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部