期刊文献+

面向家庭环境的移动机器人自主导航系统

Autonomous Navigation System of Mobile Robot for Home Environment
在线阅读 下载PDF
导出
摘要 移动机器人在家庭环境下使用传统A^(*)算法规划经过门的路线时,存在因规划的路径靠近障碍物而导致定位失败的问题。针对该问题,设计一种面向家庭环境的自主导航系统,并提出基于栅格-拓扑混合地图的SHS(Segmented Hybrid Search,SHS)路径规划方法。首先,在已建立的栅格地图上选取拓扑点构建栅格-拓扑混合地图;其次,通过Dijkstra算法搜索先验安全航路点序列,将航路点视为局部目标节点;最后,采用A^(*)算法实现分段路径搜索。实验结果表明,在较复杂的家庭环境中,所提的算法能快速规划通过门的安全无碰撞路径。 When a mobile robot plans the route through the door using the traditional A^(*)algorithm in the home environment,there is a problem that the location fails because the planned path is close to obstacles.To solve this problem,an autonomous navigation system for home environment is designed,and a Segmented Hybrid Search(SHS)path planning method based on grid topology hybrid map is proposed.Firstly,topology points on the established grid map is selected to build a grid topology hybrid map;secondly,the a priori safe waypoint sequence is searched by Dijkstra algorithm,and the waypoint is taken as the local target node;finally,A^(*)algorithm is used to realize segmented path search.Experimental results show that in more complex home environments,the algorithm can quickly plan a safe collision-free path through the door.
作者 吴立伟 杨俊友 孙义真 WU Liwei;YANG Junyou;SUN Yizhen(School of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China;Intelligent Robot Laboratory,Shenyang Open University,Shenyang 110870,China)
出处 《电声技术》 2021年第11期76-81,共6页 Audio Engineering
基金 沈阳开放大学“基于微课的青少年机器人培训课程设计与研究”(No.SYKDXB2021-5-01)
关键词 家庭环境 导航系统 栅格-拓扑混合地图 分段路径搜索 home environment navigation system grid-topology hybrid map segmented path search
  • 相关文献

参考文献9

二级参考文献84

  • 1胡春旭,熊枭,任慰,何顶新.基于嵌入式系统的室内移动机器人定位与导航[J].华中科技大学学报(自然科学版),2013,41(S1):254-257. 被引量:36
  • 2付宜利,顾晓宇,王树国.基于模糊控制的自主机器人路径规划策略研究[J].机器人,2004,26(6):548-552. 被引量:44
  • 3申晓宁,郭毓,陈庆伟,胡维礼.多目标遗传算法在机器人路径规划中的应用[J].南京理工大学学报,2006,30(6):659-663. 被引量:19
  • 4刘玲,王耀南,况菲,张辉.基于神经网络和遗传算法的移动机器人路径规划[J].计算机应用研究,2007,24(2):264-265. 被引量:24
  • 5Glasius R, Komoda A, Gielen S. A biologically inspired neural net for trajectory formation and obstacle avoidance[J]. Biological Cybernetics, 1996, 74(6): 511-520.
  • 6XUE Ying-hua, TIAN Guo-hui, HUANG Bin. Optimal robot path planning based on danger degree map[C]//Proceedings of 2009 IEEE International Conference on Automation and Logistics. Shenyang: IEEE, 2009: 1040-1045.
  • 7Huang G, Tung C, Ciou J. To achieve the path planning of mobile robot for a correct destination and direction using fuzzy theory[C]//Proceedings of 2009 IEEE International Symposium on Industrial Electronics. Seoul: IEEE, 2009: 1737-1742.
  • 8ZHANG Xiao-yong, WU Min, PENG Jun, et al. A rescue robot path planning based on ant colony optimization algorithm[C]//Proceedings of the 2009 IEEE International Conference on Information Technology and Computer Science. Kiev: IEEE, 2009: 180-183.
  • 9Ghorbani A, Shiry S, Nodehi A. Using genetic algorithm for a mobile robot path planning[C]//Proceedings of the 2009 International Conference on Future Computer and Communication. Kuala Lumpur: IEEE, 2009: 164-166.
  • 10Mansouri M, Shoorehdeli M A, Teshnehlab M. Integer GA for mobile robot path planning with using another GA as repairing function[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao: IEEE, 2008: 135-140.

共引文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部