期刊文献+

基于改进A算法的多无人机协同路径规划 被引量:16

Multi-UAV collaborative path planning based on improved A algorithm
原文传递
导出
摘要 针对复杂地形环境下多架无人机的三维路径协同规划问题,提出了一种改进的双向A~*搜索算法,该算法在双向A~*搜索的基础上,引入了无人机搜索角度作为双向A~*算法搜索的约束,大大缩小了节点的扩展区域,避免对冗余点的访问,缩小了路径规划所用的时间,并对数据的存取进行优化,提高了算法的执行效率。用MATLAB对改进后的双向A~*算法进行了仿真验证,结果显示,该算法能够快速有效地实现在满足各种约束条件下的多无人机的三维路径规划。 Aiming at the problem of three-dimensional path cooperative planning of multiple UAVs in complex terrain environment.An improved two-way A~*search algorithm is proposed.Based on two-way A~*search,this algorithm introduces the UAV search angle as two-way A~*.Algorithm search constraints greatly reduce the extended area of nodes,avoid access to redundant points,reduce the time used for path planning,and optimize data access,improving the efficiency of algorithm execution.The improved bidirectional A~*algorithm is simulated by MATLAB.The results show that the algorithm can quickly and effectively realize the 3 D path planning of multi-UAV under various constraints.
作者 赵丽华 万晓冬 Zhao Lihua;Wan Xiaodong(College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《电子测量技术》 2020年第7期72-75,166,共5页 Electronic Measurement Technology
关键词 无人机 路径规划 启发式算法 可行方向法 drone path planning heuristic algorithm feasible direction method
  • 相关文献

参考文献6

二级参考文献91

  • 1郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446. 被引量:96
  • 2冯慧,屈香菊.基于多目标模糊优化方法的无人机航迹规划[J].飞行力学,2007,25(2):25-29. 被引量:9
  • 3Gandhi P P, Kassam S A. Analysis of CFAR Processors in Nonhomogeneous Background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445.
  • 4C Zheng.M DNG and C Zhou.Coevolving and cooperating path planner for multiple unmanned air vehicles[J].Engineering Application of Artificial Intelligence,2004,17 (18):887-896.
  • 5J Xiao,Z Michalewicz and L Zhang.Adaptive evolutionary planner/navigator for mobile robots[J].IEEE Transaction on Evolutionary Computation,1997,1 (1):18-28.
  • 6D E Moriarty and R Miikkulainen.Forming neural networks through efficient and adaptive coevolution.Evolutionary Computation,1997,5(2):373-399.
  • 7刘天孚,程如意.带精英策略和视觉探测蚁群算法的机器人路径规划[J].计算机应用,2008,28(1):92-93. 被引量:13
  • 8Eun Y, Bang H. Cooperative task assignment path planning of multiple unmanned aerial vehicles using genetic algorithms [ J ]. Journal of Aircral:, 2009,46 (1) :338 -343.
  • 9N Nilsson, Problem- Solving Methods in Artificial Intelligence [ M]. McGraw - Hill, 1971.
  • 10B Weiss,M Naderhim,L del Re. Global real -time path planning for UAVs in uncertain environment [ C ]. IEEE International Sym- posium on Intelligent Control. Munich, Germany: IEEE, 2006: 2725 - 2730.

共引文献71

同被引文献154

引证文献16

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部