期刊文献+

基于网络药理学与分子对接技术的化湿败毒颗粒治疗新型冠状病毒肺炎作用机制及活性成分筛选研究 被引量:8

Mechanism and Active Components of Huashi Baidu Granule Against Corona Virus Disease 2019 Based on Network Pharmacology and Molecular Docking
原文传递
导出
摘要 目的:采用网络药理学与分子对接技术相结合的方法研究化湿败毒颗粒治疗新型冠状病毒肺炎(COVID-19)的作用机制及活性成分筛选。方法:采用中药系统药理学分析平台筛选化湿败毒颗粒活性成分及预测作用靶点,与OMIM和Gene Cards数据库筛选的病毒及肺炎靶基因取交集,得到潜在靶基因。利用Cytoscape软件构建"化合物-靶点"网络并进行分析。取平均度数较高的重要活性成分分别与3CLpro、ACE2及RdRp 3种靶蛋白采用AutoDock Vina进行分子对接,筛选关键活性成分。采用DAVID数据库进行GO和KEGG富集分析化湿败毒颗粒的作用机制。结果:化湿败毒颗粒作用"化合物-靶点"网络包含123个化合物和237个相应靶点,关键靶点涉及PTGS2、PTGS1、ESR1、NCOA2、AR、NOS2、PPARG、SCN5A、PRSS1等。GO功能富集分析得到GO条目1147个(P<0.05),KEGG通路富集筛选得到170个通路(P<0.05),涉及AGE-RAGE、IL-17、TNF、C-type lectin receptor及HIF-1等信号通路。分子对接结果显示:Kaempferol、Baicalein等与3CLpro蛋白亲和力较好;Stigmasterol、Shinpterocarpin等与ACE2蛋白亲和力较好;Beta-sitosterol、Shinpterocarpin等与RdRp蛋白亲和力较好。结论:采用网络药理学与分子对接技术相结合的方法筛选化湿败毒颗粒抗COVID-19关键活性成分并对其作用机制进行了分析,可为治疗化湿败毒颗粒的临床应用提供参考。 Objective:To study the active components and mechanism of Huashi Baidu granule against Corona Virus Disease 2019(COVID-19)based on network pharmacology and molecular docking.Methods:The active components and target gene of Huashi Baidu granule were screened by Traditional Chinese Medicine Systems Pharmacology Database(TCMSP)and literature mining.The overlapping genes of the active components and the disease gene from OMIM and GeneCards databases were collected as potential gene.The compounds-targets network was constructed by Cytoscape software and network analysis was carried out.The important active components with higher degree were docking with 3 CLpro,ACE2 and RdRp to screen the key active components.Molecular docking was performed by AutoDock vina software.GO and KEGG enrichment analysis was carried out by DAVID database.Results:The compound-target network contained 123 compounds and 237 corresponding targets,and the key targets involved PTGS2、PTGS1、ESR1、NCOA2、AR、NOS2、PPARG、SCN5 A、PRSS1,etc.The function enrichment analysis of GO was 1147(P<0.05).There are 170 signal pathways(P<0.05)in KEGG pathway enrichment screening,involving AGE-RAGE、IL-17、TNF、C-type lectin receptor and HIF-1 signaling pathway,etc.The results of molecular docking showed that kaempferol and baicalein have a good affinity with 3 CLpro,stigmasterol and shinpterocarpin have a good affinity with ACE2,beta-sitosterol and shinpterocarpin have a good affinity with RdRp.Conclusion:The active components and mechanism of Huashi Baidu granule against COVID-19 were researched based on network pharmacology and molecular docking,which provides a reference for the clinical application of Huashi Baidu granules.
作者 王恩龙 何黎黎 李婧 Wang Enlong;He Lili;Li Jing(College of Pharmmacy,Southwest Minzu University,Chengdu 610041,China;State Key Laboratory of Biotherapy,Sichuan University,Sichuan,Chengdu 610041,China)
出处 《亚太传统医药》 2021年第7期149-154,共6页 Asia-Pacific Traditional Medicine
基金 国家重点研发计划(2019YFC1712501) 四川省科技厅应用基础项目(2020YJ0277) 西南民族大学大学生创新创业训练计划(S202010656130)
关键词 新型冠状病毒肺炎 2019-nCoV 化湿败毒颗粒 网络药理学 分子对接 活性成分 Corona Virus Disease 2019 COVID-19 Huashi Baidu Granule Network Pharmacology Molecular Docking Active Components
  • 相关文献

参考文献3

二级参考文献50

  • 1王玉光,齐文升,马家驹,阮连国,卢幼然,李旭成,赵昕,张忠德,刘清泉.新型冠状病毒肺炎中医临床特征与辨证治疗初探[J].中医杂志,2020,61(4):281-285. 被引量:773
  • 2李兰婷,李燕,王永华,张述伟,杨凌.基于分子参数的CYP2C9抑制剂的预测模型[J].计算机与应用化学,2007,24(7):939-943. 被引量:4
  • 3李兰婷,李燕,王永华,张述伟,杨凌.基于分子参数的药物小肠吸收预测模型[J].分子科学学报,2007,23(4):286-291. 被引量:6
  • 4李兰婷,李燕,王永华,张述伟.基于分子参数的血脑屏障通透性预测模型[J].中国药物化学杂志,2007,17(4):221-228. 被引量:5
  • 5Huang C,Zheng C,Li Y,et al. Systems ph annat-ology in drug discov-ery and therapeutic insight for herbal medicines [ J ]. Briefings inbioinfonnatios ,2013 , bht035.
  • 6Wang Y,Li Y , Yang S,et al. Classification of substrates and inhibitorsof P-glycoprotein using unsupervised machine learning approach [ J ].Journal of chemi(;al information and modeling,2005 ,45 :750 - 757.
  • 7Wang Y, Li Y , Vang S,et al. An in silieo approach for screening fla-vonoids as f^glycoprotein inhibitors based on a Bayesian-regularizedneural net^ ork [ J ]. Journal of computer-aided molecular design ,2005,I9:137 - 147.
  • 8Wang Y,Li Y , Wang B. An in silico method for screening nicotine de-rivatives as cytochrome P450 2A6 selective inhibitors based on kernelpartial least squares[ J]. International journal of molecular sciences,2007,8:166 - 179.
  • 9Wang Y ,Li Y,U Y,el al. Modeling Km Values Using Klectrotopt)log-ical State : Substrates for Cytochrome 1)450 3A4-Mediated Metabolism[J]. Bioorg Med Chem Lett ,2005 :4076 - 4084.
  • 10Yao Y, Zhou W, Wang Z, et al. A novel Systems Pharmacology mod-el for herbal medicine injection: a case using Redlining Injection[J]. BMC Alternative Medicine,2013,in press.

共引文献2632

同被引文献155

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部