Parallel computing assigns the computing model to different processors on different devices and implements it simultaneously.Accordingly,it has broad applications in the numerical simulation of geotechnical engineerin...Parallel computing assigns the computing model to different processors on different devices and implements it simultaneously.Accordingly,it has broad applications in the numerical simulation of geotechnical engineering and underground engineering,of which models are always large-scale.With parallel computing,the computing time or the memory requirements will be reduced by splitting the original domain of the numerical model into many subdomains,which is thus named as the domain decomposition method.In this study,a cubic and equal volume domain decomposition strategy was utilized to realize the parallel computing on the distributed memory system of four-dimensional lattice spring model(4D-LSM)based on the message passing interface.With a more efficient communication strategy introduced,this study aimed at operating an one-billion-particle model on a supercomputer platform.The preprocessing procedure of the parallelized 4D-LSM was restructured and the particle generation strategy suitable for the supercomputer platform was employed to minimize the time consumption in preprocessing and calculation.On this basis,numerical calculations were performed on TianHe-3 prototype E class supercomputer at the National Supercomputer Center in Tianjin.Two fieldscale three-dimensional blasting wave propagation models were carried out,of which the numerical results verify the computing power and the advantage of the parallelized 4D-LSM in the simulation of large-scale three-dimension models.Subsequently,the time complexity and spatial complexity of 4D-LSM and other particle discrete element methods were analyzed.展开更多
Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary lay...Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary layer.For the seabed boundary layer of the deep sea,ISW is the most important dynamic process.This study analyzed the current status,hotspots,and frontiers of research on the interaction between ISW and the seafloor by CiteSpace.Focusing on the action of ISW on the seabed,such as transformation and reaction,a large amount of research work and results were systematically analyzed and summarized.On this basis,this study analyzed the wave–wave interaction and interaction between ISW and the bedform or slope of the seabed,which provided a new perspective for an in‐depth understanding of the interaction between ISW and the seafloor.Finally,the latest research results of the bottom boundary layer and marine engineering stability by ISW were introduced,and the unresolved problems in the current research work were summarized.This study provides a valuable reference for further research on the hazards of ISW to marine engineering geology.展开更多
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content...Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment.展开更多
The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mec...The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mechanics instruments equipped with a dynamic disturbance loading system and developed a second‐generation TFD‐2000/D triaxial instrument.The first‐generation device is equipped with an independent disturbance system and an advanced EDC‐580 all‐digital servo controller,which can apply disturbing load independently,implement the function of cyclic disturbance,and combine dynamic and static disturbances.The instrument was found to be reliable for use in analyzing the damage process of rocks in the disturbance test of marbles.The second‐generation instrument tackles three limitations of the first‐generation instrument:(i)it upgrades the strain measurement system and uses extensometers with linear variable differential transformers to accurately measure deformation;(ii)it uses the self‐balanced chamber to replace the Hoek–Franklin triaxial cell and auto‐balancing triaxial pressure chamber;and(iii)the loading rod is independently equipped with an EDC‐580 all‐digital servo controller,which measures precise loads.The experimental findings confirmed that the second‐generation instrument can be used for rock mechanics testing under cyclic disturbance loading,the disturbance–stress relaxation cycle,and the creep–fatigue cycle.In this sense,the second‐generation instrument can be a useful addition to deep rock mechanical instruments and provide a valuable reference.展开更多
Salt cavern hydrogen storage(SCHS)is an important component of large-scale underground hydrogen storage,with advantages such as large hydrogen storage capacity and economic feasibility.However,the uniqueness of the sa...Salt cavern hydrogen storage(SCHS)is an important component of large-scale underground hydrogen storage,with advantages such as large hydrogen storage capacity and economic feasibility.However,the uniqueness of the salt cavern structure and the inherent high risk of hydrogen storage pose a potential leakage risk.This study aims to assess the leakage risk of salt cavern hydrogen storage through a comprehensive assessment.First,the three major influencing factors of leakage risk are summarized,taking into account the unique engineering,geological conditions,and operating conditions of salt cavern storage.Subsequently,the salt cavern hydrogen storage leakage risk evaluation index system was established,and the weights of the evaluation indexes were assigned using the combination assignment method.On the basis of the two-dimensional cloud model,a new leakage risk assessment method was proposed.In addition,the risk level assessment of the salt cavern hydrogen storage facility proposed to be constructed in Pingdingshan City,Henan Province,was carried out.Finally,corresponding risk control and preventive measures are proposed.The results of the study are useful and instructive for the safe construction of deep salt cavern hydrogen storage.展开更多
Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam ro...Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam roof and floor,and rock burst.Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention.In this sense,it is of great significance to address the requirements for informatizing coal mine geological conditions,dynamically adjust sensing parameters,and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters.This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining.On this basis,it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines.Combined with the multi-field monitoring characteristics of the strain field,the temperature field,and the vibration field of distributed optical fiber sensing technology,parameters such as the strain increment ratio,the aquifer temperature gradient,and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking,aquifer water level,and water cut range,and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters.The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring,identification accuracy of optical fiber acoustic signals,multi-parameter monitoring,and early warning methods.展开更多
To systematically assess the rockburst proneness considering specimen shape,multiple groups of laboratory tests were performed on 5 rock materials in cylindrical and cuboid shapes.The linear energy storage(LES)law of ...To systematically assess the rockburst proneness considering specimen shape,multiple groups of laboratory tests were performed on 5 rock materials in cylindrical and cuboid shapes.The linear energy storage(LES)law of both cylindrical and cuboid rock specimens under uniaxial compressive load was confirmed,and the energy storage coefficient was found to be unrelated to specimen shape.On the basis of LES law,two rockburst proneness indexes,namely the strain energy storage index(W_(et))and the potential energy of elastic strain(PES),were modified.Subsequently,the W_(et),PES,peak-strength strain energy storage index(W_(et))p,and peak-strength potential energy of elastic strain(PESp)were used to assess the rockburst proneness of the cylindrical and cuboid specimens.In addition,the fragment ejection course of specimens under test was recorded by a high-speed camera.Then,the rockburst proneness judgments obtained from the 4 indexes were compared with the qualitative data during rock destruction.The results show that,under similar stress conditions,specimen shape has an ignorable effect on the rockburst proneness as a whole.The judgment accuracy of the two modified indexes,especially that of the PESp,is favorably improved to evaluate the rockburst proneness of both cylindrical and cuboid specimens.However,misjudgment ofW_(et)^(p)and PESp may still occur in the assessment of rockburst proneness as these two indexes only consider the energy state before rock peak strength and the W_(et)^(p)is formulated in a ratio form.展开更多
Tool wear is a noteworthy problem in the process of shield tunneling,and the degree of wear varies with stratum.The sand-pebble strata in Beijing are typically mechanically unstable.However,many subways are buried who...Tool wear is a noteworthy problem in the process of shield tunneling,and the degree of wear varies with stratum.The sand-pebble strata in Beijing are typically mechanically unstable.However,many subways are buried wholly or partially in sand-pebble strata.Taking the Beijing New Airport line tunneling project as research background,this study evaluated the wear characteristics of the multiconfiguration rippers of a 9-m-diameter spoke-type shield tunneling machine in a sand-pebble stratum.The wear values of five ripper teeth and ripper flanks were analyzed based on field-measured data from the Beijing New Airport line project.As the analytical results show,the wear value generally increases as the installation radius enlarges with the rise of cutting trace length.The wear of the 190-rippers was divided into five categories:pedestal wear,ripper teeth collapse,uniform wear,ripper teeth falling off and ripper flank wear.Uniform wear of the ripper teeth and ripper flank wear were the two abrasion types of the 190-rippers.The teeth of the 155-rippers mostly maintained their cutting capacity under the protection of the 190-rippers.A wear prediction model of linear fitting field data was developed for a 190-ripper face to obtain the optimum shield driving distance in the sand-pebble stratum.The average wear coefficients of the 190-ripper before and after replacement matched well,being 0.045 and 0.066 mm/km,respectively.The results of this study provide a theoretical reference for tool wear prediction in shield construction under similar geological conditions.展开更多
This paper introduces the establishment of deep underground infrastructure for science and engineering research.First,the representative deep underground research laboratories and facilities in the world and their fun...This paper introduces the establishment of deep underground infrastructure for science and engineering research.First,the representative deep underground research laboratories and facilities in the world and their functions were summarized and reviewed.Then,the plan and service target of China Yulong Lake Laboratory were proposed for the storage of resources and energy,as well as the sealing of hazardous waste in deep underground space.On this basis,this paper reveals how the facility addresses its key scientific issue on“The law of fluid matter migration in deep underground space”and engineering significance.Finally,the construction progress of the facility components was demonstrated in details.As is hoped,this paper would provide useful reference to the deep underground research community;meanwhile,international collaboration on deep underground research is highly welcome.展开更多
Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and m...Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology.展开更多
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ...Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.展开更多
Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the ...Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the specimens were observed by combining the simulation system with the acoustic emission system.Through the combination of dynamic and static stresses,the deformation and damage of rocks under deep rock excavation and blasting were simulated.As the results show,the acoustic emission events of specimens with different lithologies under combined static and dynamic cyclic loading can be roughly divided into three phases:weakening,stabilizing,and surging periods.In addition,the acoustic emission characteristics of specimens with different lithologies show general consistency in different compression phases.The degree of fragmentation of specimens increases with the applied stress level;therefore,the stress level is one of the important factors influencing the damage pattern of specimens.The acoustic emission system was used to simulate the deformation and damage of rocks subjected to deep rock body excavation and engineering blasting.Cyclic dynamic perturbations under sinusoidal waves with a frequency of 5 Hz,a loading rate of 0.1 mm/min,a cyclic amplitude of 5 MPa,and a loading rate of 0.1 mm/min were applied to the three rock samples during the experiments.Among them,the fine-grained sandstones are the most sensitive to the sinusoidal cyclic perturbation,followed by the muddy siltstone and the medium-grained sandstones.On this basis,the acoustic emission energy release characteristics were analyzed,and the waveform characteristics in the damage evolution of the specimen under dynamic perturbation were studied by extracting the key points and searching for the main frequency eigenvalues.展开更多
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manusc...Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manuscripts increases by 50%each year and over 200 manuscripts were received by 28th of November 2024.In the early period,DUSE authorship came from five countries and now reaches 29 countries.DUSE articles have been downloaded over 97000 times by readers from 170 countries/regions.It is indeed encouraging to note that DUSE has been admitted to different indices,including ESCI(August 2024),EI(March 2024),Scopus(July 2023),and DOAJ(May 2023).Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024.Its first impact factor from the Web of Science will be available in 2025.DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.展开更多
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str...To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.展开更多
Deep Underground Science and Engineering(DUSE) is a new international journal(Online ISSN: 2770-1328;Print ISSN: 2097-0668) launched by China University of Mining and Technology. The Journal is managed by a renowned i...Deep Underground Science and Engineering(DUSE) is a new international journal(Online ISSN: 2770-1328;Print ISSN: 2097-0668) launched by China University of Mining and Technology. The Journal is managed by a renowned international publisher John Wiley & Sons Australia, Ltd. and published quarterly in English. The Journal is devoted to building a mainstream academic exchange platform, focusing on forefront research and striving to become a world class scientific and technological journal.展开更多
Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower o...Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.展开更多
Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from ...Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from our special issue"Underground large-scale energy storage technologies in the context of carbon neutrality",11 from regular submissions on related topics,and two from early regular submissions.These contributions include five review articles,one perspective article,and 13 research articles.The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local m...Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local morphological features of the cleat were determined using image processing technology and a transparent cleat structure model was constructed by microfluidic lithography using the multiphase fluid visualization test system.Besides,the effect of microchannel tortuosity characteristics on two‐phase flow was analyzed in this study.The results are as follows:(1)The local width of the original cleat structure of coal was strongly nonhomogeneous.The cleats showed contraction and expansion in the horizontal direction and undulating characteristics in the vertical direction.(2)The transient flow velocity fluctuated due to the structural characteristics of the primary cleat.The water‐driven gas interface showed concave and convex instability during flow,whereas the gas‐driven water interface presented a relatively stable concave surface.(3)The meniscus advanced in a symmetrical pattern in the flat channel,and the flow stagnated due to the influence of undulation points in a partially curved channel.The flow would continue only when the meniscus surface bypassed the stagnation point and reached a new equilibrium position.(4)Enhanced shearing at the gas-liquid interface increased the gas‐injection pressure,which in turn increased residual liquids in wall grooves and liquid films on the wall surface.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51979187。
文摘Parallel computing assigns the computing model to different processors on different devices and implements it simultaneously.Accordingly,it has broad applications in the numerical simulation of geotechnical engineering and underground engineering,of which models are always large-scale.With parallel computing,the computing time or the memory requirements will be reduced by splitting the original domain of the numerical model into many subdomains,which is thus named as the domain decomposition method.In this study,a cubic and equal volume domain decomposition strategy was utilized to realize the parallel computing on the distributed memory system of four-dimensional lattice spring model(4D-LSM)based on the message passing interface.With a more efficient communication strategy introduced,this study aimed at operating an one-billion-particle model on a supercomputer platform.The preprocessing procedure of the parallelized 4D-LSM was restructured and the particle generation strategy suitable for the supercomputer platform was employed to minimize the time consumption in preprocessing and calculation.On this basis,numerical calculations were performed on TianHe-3 prototype E class supercomputer at the National Supercomputer Center in Tianjin.Two fieldscale three-dimensional blasting wave propagation models were carried out,of which the numerical results verify the computing power and the advantage of the parallelized 4D-LSM in the simulation of large-scale three-dimension models.Subsequently,the time complexity and spatial complexity of 4D-LSM and other particle discrete element methods were analyzed.
基金National Natural Science Foundation of China,Grant/Award Number:42107158Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527。
文摘Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary layer.For the seabed boundary layer of the deep sea,ISW is the most important dynamic process.This study analyzed the current status,hotspots,and frontiers of research on the interaction between ISW and the seafloor by CiteSpace.Focusing on the action of ISW on the seabed,such as transformation and reaction,a large amount of research work and results were systematically analyzed and summarized.On this basis,this study analyzed the wave–wave interaction and interaction between ISW and the bedform or slope of the seabed,which provided a new perspective for an in‐depth understanding of the interaction between ISW and the seafloor.Finally,the latest research results of the bottom boundary layer and marine engineering stability by ISW were introduced,and the unresolved problems in the current research work were summarized.This study provides a valuable reference for further research on the hazards of ISW to marine engineering geology.
基金Foundation of China(Grant No.52261160382)for financial support.
文摘Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment.
基金financial support from the National Natural Science Foundation of China(52278351 and 51978292).
文摘The mechanical behaviors of deep rocks have always posed a challenge for the implementation and safe operation of major underground engineering projects.To this end,this study modified the existing mainstream rock mechanics instruments equipped with a dynamic disturbance loading system and developed a second‐generation TFD‐2000/D triaxial instrument.The first‐generation device is equipped with an independent disturbance system and an advanced EDC‐580 all‐digital servo controller,which can apply disturbing load independently,implement the function of cyclic disturbance,and combine dynamic and static disturbances.The instrument was found to be reliable for use in analyzing the damage process of rocks in the disturbance test of marbles.The second‐generation instrument tackles three limitations of the first‐generation instrument:(i)it upgrades the strain measurement system and uses extensometers with linear variable differential transformers to accurately measure deformation;(ii)it uses the self‐balanced chamber to replace the Hoek–Franklin triaxial cell and auto‐balancing triaxial pressure chamber;and(iii)the loading rod is independently equipped with an EDC‐580 all‐digital servo controller,which measures precise loads.The experimental findings confirmed that the second‐generation instrument can be used for rock mechanics testing under cyclic disturbance loading,the disturbance–stress relaxation cycle,and the creep–fatigue cycle.In this sense,the second‐generation instrument can be a useful addition to deep rock mechanical instruments and provide a valuable reference.
基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:No.Y2023089Excellent Young Scientists Fund,Grant/Award Number:No.52122403National Natural Science Foundation of China,Grant/Award Number:No.52374069。
文摘Salt cavern hydrogen storage(SCHS)is an important component of large-scale underground hydrogen storage,with advantages such as large hydrogen storage capacity and economic feasibility.However,the uniqueness of the salt cavern structure and the inherent high risk of hydrogen storage pose a potential leakage risk.This study aims to assess the leakage risk of salt cavern hydrogen storage through a comprehensive assessment.First,the three major influencing factors of leakage risk are summarized,taking into account the unique engineering,geological conditions,and operating conditions of salt cavern storage.Subsequently,the salt cavern hydrogen storage leakage risk evaluation index system was established,and the weights of the evaluation indexes were assigned using the combination assignment method.On the basis of the two-dimensional cloud model,a new leakage risk assessment method was proposed.In addition,the risk level assessment of the salt cavern hydrogen storage facility proposed to be constructed in Pingdingshan City,Henan Province,was carried out.Finally,corresponding risk control and preventive measures are proposed.The results of the study are useful and instructive for the safe construction of deep salt cavern hydrogen storage.
基金National Natural Science Foundation of China,Grant/Award Number:42130706。
文摘Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam roof and floor,and rock burst.Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention.In this sense,it is of great significance to address the requirements for informatizing coal mine geological conditions,dynamically adjust sensing parameters,and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters.This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining.On this basis,it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines.Combined with the multi-field monitoring characteristics of the strain field,the temperature field,and the vibration field of distributed optical fiber sensing technology,parameters such as the strain increment ratio,the aquifer temperature gradient,and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking,aquifer water level,and water cut range,and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters.The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring,identification accuracy of optical fiber acoustic signals,multi-parameter monitoring,and early warning methods.
基金National Natural Science Foundation of China,Grant/Award Number:41877272Fundamental Research Funds for the Central Universities,Grant/Award Number:2242022k30054。
文摘To systematically assess the rockburst proneness considering specimen shape,multiple groups of laboratory tests were performed on 5 rock materials in cylindrical and cuboid shapes.The linear energy storage(LES)law of both cylindrical and cuboid rock specimens under uniaxial compressive load was confirmed,and the energy storage coefficient was found to be unrelated to specimen shape.On the basis of LES law,two rockburst proneness indexes,namely the strain energy storage index(W_(et))and the potential energy of elastic strain(PES),were modified.Subsequently,the W_(et),PES,peak-strength strain energy storage index(W_(et))p,and peak-strength potential energy of elastic strain(PESp)were used to assess the rockburst proneness of the cylindrical and cuboid specimens.In addition,the fragment ejection course of specimens under test was recorded by a high-speed camera.Then,the rockburst proneness judgments obtained from the 4 indexes were compared with the qualitative data during rock destruction.The results show that,under similar stress conditions,specimen shape has an ignorable effect on the rockburst proneness as a whole.The judgment accuracy of the two modified indexes,especially that of the PESp,is favorably improved to evaluate the rockburst proneness of both cylindrical and cuboid specimens.However,misjudgment ofW_(et)^(p)and PESp may still occur in the assessment of rockburst proneness as these two indexes only consider the energy state before rock peak strength and the W_(et)^(p)is formulated in a ratio form.
基金National Natural Science Foundation of China,Grant/Award Numbers:51608521,52178375Fundamental Research Funds for the Central Universities,Grant/Award Number:2022YQLJ01Major Achievements Transformation and Industrialization Projects of Central Universities in Beijing,Grant/Award Number:ZDZH20141141301。
文摘Tool wear is a noteworthy problem in the process of shield tunneling,and the degree of wear varies with stratum.The sand-pebble strata in Beijing are typically mechanically unstable.However,many subways are buried wholly or partially in sand-pebble strata.Taking the Beijing New Airport line tunneling project as research background,this study evaluated the wear characteristics of the multiconfiguration rippers of a 9-m-diameter spoke-type shield tunneling machine in a sand-pebble stratum.The wear values of five ripper teeth and ripper flanks were analyzed based on field-measured data from the Beijing New Airport line project.As the analytical results show,the wear value generally increases as the installation radius enlarges with the rise of cutting trace length.The wear of the 190-rippers was divided into five categories:pedestal wear,ripper teeth collapse,uniform wear,ripper teeth falling off and ripper flank wear.Uniform wear of the ripper teeth and ripper flank wear were the two abrasion types of the 190-rippers.The teeth of the 155-rippers mostly maintained their cutting capacity under the protection of the 190-rippers.A wear prediction model of linear fitting field data was developed for a 190-ripper face to obtain the optimum shield driving distance in the sand-pebble stratum.The average wear coefficients of the 190-ripper before and after replacement matched well,being 0.045 and 0.066 mm/km,respectively.The results of this study provide a theoretical reference for tool wear prediction in shield construction under similar geological conditions.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2022QN1032。
文摘This paper introduces the establishment of deep underground infrastructure for science and engineering research.First,the representative deep underground research laboratories and facilities in the world and their functions were summarized and reviewed.Then,the plan and service target of China Yulong Lake Laboratory were proposed for the storage of resources and energy,as well as the sealing of hazardous waste in deep underground space.On this basis,this paper reveals how the facility addresses its key scientific issue on“The law of fluid matter migration in deep underground space”and engineering significance.Finally,the construction progress of the facility components was demonstrated in details.As is hoped,this paper would provide useful reference to the deep underground research community;meanwhile,international collaboration on deep underground research is highly welcome.
文摘Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology.
基金National Natural Science Foundation of China,Grant/Award Number:41941018State Key Laboratory for GeoMechanics and Deep Underground Engineering,Grant/Award Number:SKLGDUEK202201。
文摘Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.
基金Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB,Grant/Award Number:SKLGDUEK2023National Natural Science Foundation of China,Grant/Award Number:52204101Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022QE137。
文摘Three sandstone specimens common in rock engineering were selected to study the differences in the mechanical properties of rocks with different lithologies.The development and expansion of the internal cracks in the specimens were observed by combining the simulation system with the acoustic emission system.Through the combination of dynamic and static stresses,the deformation and damage of rocks under deep rock excavation and blasting were simulated.As the results show,the acoustic emission events of specimens with different lithologies under combined static and dynamic cyclic loading can be roughly divided into three phases:weakening,stabilizing,and surging periods.In addition,the acoustic emission characteristics of specimens with different lithologies show general consistency in different compression phases.The degree of fragmentation of specimens increases with the applied stress level;therefore,the stress level is one of the important factors influencing the damage pattern of specimens.The acoustic emission system was used to simulate the deformation and damage of rocks subjected to deep rock body excavation and engineering blasting.Cyclic dynamic perturbations under sinusoidal waves with a frequency of 5 Hz,a loading rate of 0.1 mm/min,a cyclic amplitude of 5 MPa,and a loading rate of 0.1 mm/min were applied to the three rock samples during the experiments.Among them,the fine-grained sandstones are the most sensitive to the sinusoidal cyclic perturbation,followed by the muddy siltstone and the medium-grained sandstones.On this basis,the acoustic emission energy release characteristics were analyzed,and the waveform characteristics in the damage evolution of the specimen under dynamic perturbation were studied by extracting the key points and searching for the main frequency eigenvalues.
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
文摘Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manuscripts increases by 50%each year and over 200 manuscripts were received by 28th of November 2024.In the early period,DUSE authorship came from five countries and now reaches 29 countries.DUSE articles have been downloaded over 97000 times by readers from 170 countries/regions.It is indeed encouraging to note that DUSE has been admitted to different indices,including ESCI(August 2024),EI(March 2024),Scopus(July 2023),and DOAJ(May 2023).Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024.Its first impact factor from the Web of Science will be available in 2025.DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.
基金National Natural Science Foundation of China,Grant/Award Numbers:51878060,52078046。
文摘To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues.
文摘Deep Underground Science and Engineering(DUSE) is a new international journal(Online ISSN: 2770-1328;Print ISSN: 2097-0668) launched by China University of Mining and Technology. The Journal is managed by a renowned international publisher John Wiley & Sons Australia, Ltd. and published quarterly in English. The Journal is devoted to building a mainstream academic exchange platform, focusing on forefront research and striving to become a world class scientific and technological journal.
基金National Natural Science Foundation of China,Grant/Award Number:52168059Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:NJYT23103Fundamental Research Funds in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:2023QNJS159。
文摘Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.
文摘Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from our special issue"Underground large-scale energy storage technologies in the context of carbon neutrality",11 from regular submissions on related topics,and two from early regular submissions.These contributions include five review articles,one perspective article,and 13 research articles.The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
基金National Natural Science Foundation of China,Grant/Award Numbers:52074169,52174159,522741280。
文摘Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local morphological features of the cleat were determined using image processing technology and a transparent cleat structure model was constructed by microfluidic lithography using the multiphase fluid visualization test system.Besides,the effect of microchannel tortuosity characteristics on two‐phase flow was analyzed in this study.The results are as follows:(1)The local width of the original cleat structure of coal was strongly nonhomogeneous.The cleats showed contraction and expansion in the horizontal direction and undulating characteristics in the vertical direction.(2)The transient flow velocity fluctuated due to the structural characteristics of the primary cleat.The water‐driven gas interface showed concave and convex instability during flow,whereas the gas‐driven water interface presented a relatively stable concave surface.(3)The meniscus advanced in a symmetrical pattern in the flat channel,and the flow stagnated due to the influence of undulation points in a partially curved channel.The flow would continue only when the meniscus surface bypassed the stagnation point and reached a new equilibrium position.(4)Enhanced shearing at the gas-liquid interface increased the gas‐injection pressure,which in turn increased residual liquids in wall grooves and liquid films on the wall surface.