It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them int...It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance.展开更多
基金supported in part by the Youth Foundation of Shanxi Province(5113240053)the Fundamental Research Funds for the Central Universities(G2023KY05102)+2 种基金the Natural Science Foundation of China(61976120)the Natural Science Foundation of Jiangsu Province(BK20231337)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)。
文摘It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance.