Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r...Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.展开更多
Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making i...Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making in the planning and control layers.However,most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction.These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms,leading to potentially unrealistic predictions.To address these limitations,we propose the Driving Style Guided Trajectory Prediction framework(DSG-TP),which incorporates a probabilistic representation of driving style into trajectory prediction.Our approach enhances the model’s ability to interact with vehicle behavior characteristics in complex traffic scenarios,significantly improving prediction reliability in critical decision-making situations by incorporating the driving style recognition module.Experimental evaluations on the Argoverse 1 dataset demonstrate that our method outperforms existing approaches in both prediction accuracy and computational efficiency.Through extensive ablation studies,we further validate the contribution of each module to overall performance.Notably,in decision-sensitive scenarios,DSG-TP more accurately captures vehicle behavior patterns and generates trajectory predictions that align with different driving styles,providing crucial support for safe decision-making in autonomous driving systems.展开更多
In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce...In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.展开更多
A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of...A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect.We give an analysis of the effect of the twisted fiber on the laser.We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser.The laser is deduced to a stable state,a double-periodic state,a period-6 state,a period-8 state,a period-9 state,a multi-period state,beat phenomenon,and so on.The periodic laser can be anti-controlled to chaos.Some chaos-anti-control area is found.The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.展开更多
This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented i...This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.展开更多
In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(R...In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’diagnostic efficiency.Therefore,a deep-learning-based automated diagnostic systemwithmulti-label segmentatio...This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’diagnostic efficiency.Therefore,a deep-learning-based automated diagnostic systemwithmulti-label segmentation is proposed to recognize the condition of vertebral fractures.The whole spine Computed Tomography(CT)image is segmented into the fracture,normal,and background using U-Net,and the fracture degree of each vertebra is evaluated(Genant semi-qualitative evaluation).The main work of this paper includes:First,based on the spatial configuration network(SCN)structure,U-Net is used instead of the SCN feature extraction network.The attention mechanismandthe residual connectionbetweenthe convolutional layers are added in the local network(LN)stage.Multiple filtering is added in the global network(GN)stage,and each layer of the LN decoder feature map is filtered separately using dot product,and the filtered features are re-convolved to obtain the GN output heatmap.Second,a network model with improved SCN(M-SCN)helps automatically localize the center-of-mass position of each vertebra,and the voxels around each localized vertebra were clipped,eliminating a large amount of redundant information(e.g.,background and other interfering vertebrae)and keeping the vertebrae to be segmented in the center of the image.Multilabel segmentation of the clipped portion was subsequently performed using U-Net.This paper uses VerSe’19,VerSe’20(using only data containing vertebral fractures),and private data(provided by Guizhou Orthopedic Hospital)for model training and evaluation.Compared with the original SCN network,the M-SCN reduced the prediction error rate by 1.09%and demonstrated the effectiveness of the improvement in ablation experiments.In the vertebral segmentation experiment,the Dice Similarity Coefficient(DSC)index reached 93.50%and the Maximum Symmetry Surface Distance(MSSD)index was 4.962 mm,with accuracy and recall of 95.82%and 91.73%,respectively.Fractured vertebrae were also marked as red and normal vertebrae were marked as white in the experiment,and the semi-qualitative assessment results of Genant were provided,as well as the results of spinal localization visualization and 3D reconstructed views of the spine to analyze the actual predictive ability of the model.It provides a promising tool for vertebral fracture detection.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
In this paper we propose an improved fuzzy adaptive control strategy, for a class of nonlinear chaotic fractional order(SISO) systems with unknown control gain sign. The online control algorithm uses fuzzy logic sets ...In this paper we propose an improved fuzzy adaptive control strategy, for a class of nonlinear chaotic fractional order(SISO) systems with unknown control gain sign. The online control algorithm uses fuzzy logic sets for the identification of the fractional order chaotic system, whereas the lack of a priori knowledge on the control directions is solved by introducing a fractional order Nussbaum gain. Based on Lyapunov stability theorem, stability analysis is performed for the proposed control method for an acceptable synchronization error level. In this work, the Gr ¨unwald-Letnikov method is used for numerical approximation of the fractional order systems. A simulation example is given to illustrate the effectiveness of the proposed control scheme.展开更多
Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switchin...Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switching and high-power-density power electronics converters,thus reducing the overall weight,volume and power consumption of power electronic systems.As a review paper,this paper summarizes the characteristics and development of the state-of-art GaN power devices with different structures,analyzes the research status,and forecasts the application prospect of GaN devices.In addition,the problems and challenges of GaN devices were discussed.And thanks to the advantages of GaN devices,both the power density and efficiency of motor drive system are improved,which also have been presented in this paper.展开更多
Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherica...Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.展开更多
In this paper,rotor of switched reluctance motor(SRM)is employed by mounting copper windings on the rotor poles as well as the stator poles.Rotor and stator windings are excited from DC supply in order to increase the...In this paper,rotor of switched reluctance motor(SRM)is employed by mounting copper windings on the rotor poles as well as the stator poles.Rotor and stator windings are excited from DC supply in order to increase the developed electro-magnetic torque;thus enhancing the output power of the drive and keeping the system compactness.Furthermore,the proposed SRM offers higher reliability than conventional one,if excitation of rotor windings is lost,the drive will turn into a conventional SRM,the drive will continue running as a conventional SRM.Finite element method magnetics(FEMM)software is applied to obtain the magnetic characteristics of the proposed SRM.A control strategy for excitation of rotor and stator windings is presented.MATLAB/Simulink modeling of the proposed SRM is given and validated by practical experiment.Experimental Results on a prototype show that the proposed SRM is capable of achieving an increased torque compared with conventional SRM drive.展开更多
This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required ...This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.展开更多
In this paper, an active noise control(ANC) system is developed to provide an effective and non-intrusive solution for reducing loud snoring to provide a quiet environment for a snorer's bed partner. An adaptive l...In this paper, an active noise control(ANC) system is developed to provide an effective and non-intrusive solution for reducing loud snoring to provide a quiet environment for a snorer's bed partner. An adaptive least mean square(LMS)algorithm optimized for different kinds of snore signals is introduced and theoretically analyzed. Also, a residual noise masking approach is proposed to further reduce the effect of the snore noise without interfering with the LMS algorithm. Computer simulations followed by real-time experiments are conducted to demonstrate the feasibility of the snore ANC systems based on a pillow setup. For the optimum effect based on the characteristics of human hearing, the performance of the proposed approach is evaluated by using the multi-channel feedforward ANC systems based on the filtered-X least mean square(FXLMS) algorithm.Compared with a traditional headboard setup for snoring noise control, the proposed snore ANC systems optimized for ear field operation yield much higher noise reduction around the ears of the snorer's bed partner.展开更多
Steam pretreatment was employed to disrupt Microalgal cells for lipids extraction.Effects of steam pretreatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM)and tran...Steam pretreatment was employed to disrupt Microalgal cells for lipids extraction.Effects of steam pretreatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Effect of treatment on lipid extraction was also studied.Microalgal cell walls were distorted after steam pretreatment due to the hydrolysis of organic macromolecules contained in cell wall.Maximum curvature was increased from 1.88×10^(-6) m^(-1) to 1.43×10^(-7) m^(-1) after treatment with the steam at 130℃.The fractal dimension of microalgal cells increased from 1.25 to 1.30 after pretreatment for 15 min,and further increased to 1.47 when the pretreatment time was increased to 60 min.Increased steam pretreatment temperature and time enhanced the hydrolysis of organic macromolecules,and finally destroyed microalgal cell walls at pretreatment temperature of 130℃and pretreatment time of 60 min.Lipid extracted from wet microalgal was significantly increased(2.1-fold)after pretreatment.展开更多
For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor....For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor. For the motor whose structure has been determined and processed, the structural parameters of the motor cannot be changed, and its performance cannot be improved from the perspective of the motor body.Therefore, this paper tries to consider the influence of the cogging force on the normal operation of the motor from the perspective of control. In this paper, starting from the body structure of motor, first on the annular linear motor of the cogging force characteristics were extracted, and its expression is obtained by Fourier decomposition, then investigated considering the cogging force and does not consider the cogging force control of motor model, it can be seen that the control performance deteriorates significantly after considering cogging force of the motor, and the acceleration fluctuation increases significantly during the operation of the motor. On this basis, disturbance observation algorithm is introduced, and feedforward compensation is carried out by extracting the characteristic values of the disturbance model. The results show that the disturbance observer can suppress the thrust fluctuation caused by the motor cogging force to a large extent, and it can reduce the peak-to-peak value of the thrust fluctuation by more than 85% during the motor acceleration operation.展开更多
Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed ...Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed by synchronous generators,resulting in an improper operation of conventional phase selection methods(PSMs).In this paper,the relative angles between sequence voltages measured at the relay location are determined analytically in two stages:(1)a short-circuit analysis is performed at the fault location to determine the relative angles between sequence voltages;and(2)an analysis of the impact of transmission line on the phase difference between the sequence voltages of relay and fault is conducted for different IBR controllers.Consequently,new PSM zones based on relative angles between sequence voltages are devised to facilitate accurate PSM regardless of the fault currents,resistances,or locations of IBR.Comprehensive time-domain simulations confirm the accuracy of the proposed PSM with different fault locations,resistances,types,and currents.展开更多
With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real ...With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real time are vital to ensure system security and economics.To this end,solving alternating current(AC)optimal power flow(OPF)with operational constraints remains an important yet challenging optimization problem for secure and economic operation of the power grid.This paper adopts a novel method to derive fast OPF solutions using state-of-the-art deep reinforcement learning(DRL)algorithm,which can greatly assist power grid operators in making rapid and effective decisions.The presented method adopts imitation learning to generate initial weights for the neural network(NN),and a proximal policy optimization algorithm to train and test stable and robust artificial intelligence(AI)agents.Training and testing procedures are conducted on the IEEE 14-bus and the Illinois 200-bus systems.The results show the effectiveness of the method with significant potential for assisting power grid operators in real-time operations.展开更多
A virtual synchronous generator(VSG)control has been proposed as a means to control a voltage source converter interfaced generation and storage to retain the dynamics of a conventional synchronous generator.The stora...A virtual synchronous generator(VSG)control has been proposed as a means to control a voltage source converter interfaced generation and storage to retain the dynamics of a conventional synchronous generator.The storage is used to provide the inertia power and droop power in the VSG control to improve the frequency stability.Since the parameters in the VSG control can be varied,it is necessary for it to be tuned to be adaptive,in order to achieve an optimal response to grid frequency changes.However,the storage cannot provide infinite power and the converter has a strict power limitation which must be observed.The adaptive VSG control should consider these limitations,which have not been considered previously.This paper proposes an adaptive VSG control aimed at obtaining the optimal grid supporting services during frequency transients,accounting for converter and storage capacity limitations.The proposed control has been validated via hardware-in-the-loop testing.It is then implemented in storage co-located with wind farms in a modified IEEE 39-bus system.The results show that the proposed control stabilizes the system faster and has better cooperation with other VSGs,considering storage and converter limits.展开更多
基金supported by the science and technology foundation of Guizhou province[2022]general 013the science and technology foundation of Guizhou province[2022]general 014+1 种基金the science and technology foundation of Guizhou province GCC[2022]016-1the educational technology foundation of Guizhou province[2022]043.
文摘Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.52267003.
文摘Trajectory prediction is a critical task in autonomous driving systems.It enables vehicles to anticipate the future movements of surrounding traffic participants,which facilitates safe and human-like decision-making in the planning and control layers.However,most existing approaches rely on end-to-end deep learning architectures that overlook the influence of driving style on trajectory prediction.These methods often lack explicit modeling of semantic driving behavior and effective interaction mechanisms,leading to potentially unrealistic predictions.To address these limitations,we propose the Driving Style Guided Trajectory Prediction framework(DSG-TP),which incorporates a probabilistic representation of driving style into trajectory prediction.Our approach enhances the model’s ability to interact with vehicle behavior characteristics in complex traffic scenarios,significantly improving prediction reliability in critical decision-making situations by incorporating the driving style recognition module.Experimental evaluations on the Argoverse 1 dataset demonstrate that our method outperforms existing approaches in both prediction accuracy and computational efficiency.Through extensive ablation studies,we further validate the contribution of each module to overall performance.Notably,in decision-sensitive scenarios,DSG-TP more accurately captures vehicle behavior patterns and generates trajectory predictions that align with different driving styles,providing crucial support for safe decision-making in autonomous driving systems.
基金supported by the Key Technology of Flexible Regulation of Energy in Green High-Efficiency/Carbon-Efficient Buildings under the Smart Park System of PowerChina Guiyang Co.,Ltd.(YJ2022-12)the Science and Technology Support Plan of Guizhou Province“Research and Application Development of Key Technologies for Flexible Regulation of Energy in High-Efficiency/Carbon-Efficient Buildings”(Guizhou Science and Technology Cooperation Support[2023]General 409).
文摘In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.
文摘A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect.We give an analysis of the effect of the twisted fiber on the laser.We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser.The laser is deduced to a stable state,a double-periodic state,a period-6 state,a period-8 state,a period-9 state,a multi-period state,beat phenomenon,and so on.The periodic laser can be anti-controlled to chaos.Some chaos-anti-control area is found.The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.
文摘This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
基金supported by the Industrial Strategic Technology Development Program(10070171,Development of core technology for advanced locomotion/manipulation based on high-speed/power robot platform and robot intelligence)funded By the Ministry of Trade,Industry&Energy(MI,Korea).
文摘In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
文摘This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’diagnostic efficiency.Therefore,a deep-learning-based automated diagnostic systemwithmulti-label segmentation is proposed to recognize the condition of vertebral fractures.The whole spine Computed Tomography(CT)image is segmented into the fracture,normal,and background using U-Net,and the fracture degree of each vertebra is evaluated(Genant semi-qualitative evaluation).The main work of this paper includes:First,based on the spatial configuration network(SCN)structure,U-Net is used instead of the SCN feature extraction network.The attention mechanismandthe residual connectionbetweenthe convolutional layers are added in the local network(LN)stage.Multiple filtering is added in the global network(GN)stage,and each layer of the LN decoder feature map is filtered separately using dot product,and the filtered features are re-convolved to obtain the GN output heatmap.Second,a network model with improved SCN(M-SCN)helps automatically localize the center-of-mass position of each vertebra,and the voxels around each localized vertebra were clipped,eliminating a large amount of redundant information(e.g.,background and other interfering vertebrae)and keeping the vertebrae to be segmented in the center of the image.Multilabel segmentation of the clipped portion was subsequently performed using U-Net.This paper uses VerSe’19,VerSe’20(using only data containing vertebral fractures),and private data(provided by Guizhou Orthopedic Hospital)for model training and evaluation.Compared with the original SCN network,the M-SCN reduced the prediction error rate by 1.09%and demonstrated the effectiveness of the improvement in ablation experiments.In the vertebral segmentation experiment,the Dice Similarity Coefficient(DSC)index reached 93.50%and the Maximum Symmetry Surface Distance(MSSD)index was 4.962 mm,with accuracy and recall of 95.82%and 91.73%,respectively.Fractured vertebrae were also marked as red and normal vertebrae were marked as white in the experiment,and the semi-qualitative assessment results of Genant were provided,as well as the results of spinal localization visualization and 3D reconstructed views of the spine to analyze the actual predictive ability of the model.It provides a promising tool for vertebral fracture detection.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
基金supported by the Algerian Ministry of Higher Education and Scientific Research(MESRS)for CNEPRU Research Project(A01L08UN210120110001)
文摘In this paper we propose an improved fuzzy adaptive control strategy, for a class of nonlinear chaotic fractional order(SISO) systems with unknown control gain sign. The online control algorithm uses fuzzy logic sets for the identification of the fractional order chaotic system, whereas the lack of a priori knowledge on the control directions is solved by introducing a fractional order Nussbaum gain. Based on Lyapunov stability theorem, stability analysis is performed for the proposed control method for an acceptable synchronization error level. In this work, the Gr ¨unwald-Letnikov method is used for numerical approximation of the fractional order systems. A simulation example is given to illustrate the effectiveness of the proposed control scheme.
基金This work was supported in part by the National Natural Science Foundation of China under Project 51877006,and in part by the Aeronautical Science Foundation of China 20162851016。
文摘Wide band-gap gallium nitride(GaN)device has the advantages of large band-gap,high electron mobility and low dielectric constant.Compared with traditional Si devices,these advantages make it suitable for fast-switching and high-power-density power electronics converters,thus reducing the overall weight,volume and power consumption of power electronic systems.As a review paper,this paper summarizes the characteristics and development of the state-of-art GaN power devices with different structures,analyzes the research status,and forecasts the application prospect of GaN devices.In addition,the problems and challenges of GaN devices were discussed.And thanks to the advantages of GaN devices,both the power density and efficiency of motor drive system are improved,which also have been presented in this paper.
文摘Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.
文摘In this paper,rotor of switched reluctance motor(SRM)is employed by mounting copper windings on the rotor poles as well as the stator poles.Rotor and stator windings are excited from DC supply in order to increase the developed electro-magnetic torque;thus enhancing the output power of the drive and keeping the system compactness.Furthermore,the proposed SRM offers higher reliability than conventional one,if excitation of rotor windings is lost,the drive will turn into a conventional SRM,the drive will continue running as a conventional SRM.Finite element method magnetics(FEMM)software is applied to obtain the magnetic characteristics of the proposed SRM.A control strategy for excitation of rotor and stator windings is presented.MATLAB/Simulink modeling of the proposed SRM is given and validated by practical experiment.Experimental Results on a prototype show that the proposed SRM is capable of achieving an increased torque compared with conventional SRM drive.
文摘This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.
文摘In this paper, an active noise control(ANC) system is developed to provide an effective and non-intrusive solution for reducing loud snoring to provide a quiet environment for a snorer's bed partner. An adaptive least mean square(LMS)algorithm optimized for different kinds of snore signals is introduced and theoretically analyzed. Also, a residual noise masking approach is proposed to further reduce the effect of the snore noise without interfering with the LMS algorithm. Computer simulations followed by real-time experiments are conducted to demonstrate the feasibility of the snore ANC systems based on a pillow setup. For the optimum effect based on the characteristics of human hearing, the performance of the proposed approach is evaluated by using the multi-channel feedforward ANC systems based on the filtered-X least mean square(FXLMS) algorithm.Compared with a traditional headboard setup for snoring noise control, the proposed snore ANC systems optimized for ear field operation yield much higher noise reduction around the ears of the snorer's bed partner.
基金supported by the National Key Research and Development Program-China(2017YFE0122800)Shandong Provincial Natural Science Foundation(ZR2019MC060)+1 种基金Key Research and Development Program of Jining City(2018ZDGH024)a Project of Shandong Province Higher Educational Science and Technology Program(J17KA095)。
文摘Steam pretreatment was employed to disrupt Microalgal cells for lipids extraction.Effects of steam pretreatment on microstructure of microalgal cells were investigated through scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Effect of treatment on lipid extraction was also studied.Microalgal cell walls were distorted after steam pretreatment due to the hydrolysis of organic macromolecules contained in cell wall.Maximum curvature was increased from 1.88×10^(-6) m^(-1) to 1.43×10^(-7) m^(-1) after treatment with the steam at 130℃.The fractal dimension of microalgal cells increased from 1.25 to 1.30 after pretreatment for 15 min,and further increased to 1.47 when the pretreatment time was increased to 60 min.Increased steam pretreatment temperature and time enhanced the hydrolysis of organic macromolecules,and finally destroyed microalgal cell walls at pretreatment temperature of 130℃and pretreatment time of 60 min.Lipid extracted from wet microalgal was significantly increased(2.1-fold)after pretreatment.
基金supported in part by the National Natural Science Foundation of China under Grant 51507813。
文摘For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor. For the motor whose structure has been determined and processed, the structural parameters of the motor cannot be changed, and its performance cannot be improved from the perspective of the motor body.Therefore, this paper tries to consider the influence of the cogging force on the normal operation of the motor from the perspective of control. In this paper, starting from the body structure of motor, first on the annular linear motor of the cogging force characteristics were extracted, and its expression is obtained by Fourier decomposition, then investigated considering the cogging force and does not consider the cogging force control of motor model, it can be seen that the control performance deteriorates significantly after considering cogging force of the motor, and the acceleration fluctuation increases significantly during the operation of the motor. On this basis, disturbance observation algorithm is introduced, and feedforward compensation is carried out by extracting the characteristic values of the disturbance model. The results show that the disturbance observer can suppress the thrust fluctuation caused by the motor cogging force to a large extent, and it can reduce the peak-to-peak value of the thrust fluctuation by more than 85% during the motor acceleration operation.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.RGPIN-2023-0368)Qatar University(No.QUCG-CENG-24/25-485)。
文摘Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during faults.However,these fault currents differ from the typical fault currents fed by synchronous generators,resulting in an improper operation of conventional phase selection methods(PSMs).In this paper,the relative angles between sequence voltages measured at the relay location are determined analytically in two stages:(1)a short-circuit analysis is performed at the fault location to determine the relative angles between sequence voltages;and(2)an analysis of the impact of transmission line on the phase difference between the sequence voltages of relay and fault is conducted for different IBR controllers.Consequently,new PSM zones based on relative angles between sequence voltages are devised to facilitate accurate PSM regardless of the fault currents,resistances,or locations of IBR.Comprehensive time-domain simulations confirm the accuracy of the proposed PSM with different fault locations,resistances,types,and currents.
基金supported by State Grid Science and Technology Program“Research on Real-time Autonomous Control Strategies for Power Grid Based on AI Technologies”(No.5700-201958523A-0-0-00)
文摘With the increasing penetration of renewable energy,power grid operators are observing both fast and large fluctuations in power and voltage profiles on a daily basis.Fast and accurate control actions derived in real time are vital to ensure system security and economics.To this end,solving alternating current(AC)optimal power flow(OPF)with operational constraints remains an important yet challenging optimization problem for secure and economic operation of the power grid.This paper adopts a novel method to derive fast OPF solutions using state-of-the-art deep reinforcement learning(DRL)algorithm,which can greatly assist power grid operators in making rapid and effective decisions.The presented method adopts imitation learning to generate initial weights for the neural network(NN),and a proximal policy optimization algorithm to train and test stable and robust artificial intelligence(AI)agents.Training and testing procedures are conducted on the IEEE 14-bus and the Illinois 200-bus systems.The results show the effectiveness of the method with significant potential for assisting power grid operators in real-time operations.
基金This work was supported by the Science Foundation Ireland(SFI)under the projects ESIPP,Grant No.SFI/15/SPP/E3125,AMPSAS,Grant No.SFI/15/IA/3074under the project EdgreFLEx,Grant No.883710。
文摘A virtual synchronous generator(VSG)control has been proposed as a means to control a voltage source converter interfaced generation and storage to retain the dynamics of a conventional synchronous generator.The storage is used to provide the inertia power and droop power in the VSG control to improve the frequency stability.Since the parameters in the VSG control can be varied,it is necessary for it to be tuned to be adaptive,in order to achieve an optimal response to grid frequency changes.However,the storage cannot provide infinite power and the converter has a strict power limitation which must be observed.The adaptive VSG control should consider these limitations,which have not been considered previously.This paper proposes an adaptive VSG control aimed at obtaining the optimal grid supporting services during frequency transients,accounting for converter and storage capacity limitations.The proposed control has been validated via hardware-in-the-loop testing.It is then implemented in storage co-located with wind farms in a modified IEEE 39-bus system.The results show that the proposed control stabilizes the system faster and has better cooperation with other VSGs,considering storage and converter limits.