Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos ba...Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.展开更多
Essential proteins are vital to the survival of a cell. There are various features related to the essentiality of proteins, such as biological and topological features. Many computational methods have been developed t...Essential proteins are vital to the survival of a cell. There are various features related to the essentiality of proteins, such as biological and topological features. Many computational methods have been developed to identify essential proteins by using these features. However, it is still a big challenge to design an effective method that is able to select suitable features and integrate them to predict essential proteins. In this work, we first collect 26 features, and use SVM-RFE to select some of them to create a feature space for predicting essential proteins, and then remove the features that share the biological meaning with other features in the feature space according to their Pearson Correlation Coefficients(PCC). The experiments are carried out on S. cerevisiae data. Six features are determined as the best subset of features. To assess the prediction performance of our method, we further compare it with some machine learning methods, such as SVM, Naive Bayes, Bayes Network, and NBTree when inputting the different number of features. The results show that those methods using the 6 features outperform that using other features, which confirms the effectiveness of our feature selection method for essential protein prediction.展开更多
基金supported in part by the National Natural Science Foundation under Grant No.61070003,No.61272020,and No.61071128Zhejiang Provincial Natural Science Foundation under Grant No.R1090052 and No.Y1101184
文摘Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.
基金supported by the National Natural Science Foundation of China(Nos.61232001,61502166,61502214,61379108,and 61370024)Scientific Research Fund of Hunan Provincial Education Department(Nos.15CY007 and 10A076)
文摘Essential proteins are vital to the survival of a cell. There are various features related to the essentiality of proteins, such as biological and topological features. Many computational methods have been developed to identify essential proteins by using these features. However, it is still a big challenge to design an effective method that is able to select suitable features and integrate them to predict essential proteins. In this work, we first collect 26 features, and use SVM-RFE to select some of them to create a feature space for predicting essential proteins, and then remove the features that share the biological meaning with other features in the feature space according to their Pearson Correlation Coefficients(PCC). The experiments are carried out on S. cerevisiae data. Six features are determined as the best subset of features. To assess the prediction performance of our method, we further compare it with some machine learning methods, such as SVM, Naive Bayes, Bayes Network, and NBTree when inputting the different number of features. The results show that those methods using the 6 features outperform that using other features, which confirms the effectiveness of our feature selection method for essential protein prediction.