期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Artificial Intelligence Empowers Solid‑State Batteries for Material Screening and Performance Evaluation 被引量:1
1
作者 Sheng Wang Jincheng Liu +5 位作者 Xiaopan Song Huajian Xu Yang Gu Junyu Fan Bin Sun Linwei Yu 《Nano-Micro Letters》 2025年第11期599-629,共31页
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b... Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration. 展开更多
关键词 Solid-state batteries Artificial intelligence Deep learning Material screening Performance evaluation
在线阅读 下载PDF
Achieving 20%Toluene‑Processed Binary Organic Solar Cells via Secondary Regulation of Donor Aggregation in Sequential Processing
2
作者 Yufei Wang Chuanlin Gao +15 位作者 Wen Lei Tao Yang Zezhou Liang Kangbo Sun Chaoyue Zhao Lu Chen Liangxiang Zhu Haoxuan Zeng Xiaokang Sun Bin He Hanlin Hu Zeguo Tang Mingxia Qiu Shunpu Li Peigang Han Guangye Zhang 《Nano-Micro Letters》 2025年第9期75-93,共19页
Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic... Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent. 展开更多
关键词 Organic solar cells Non-halogen solvent Sequential processing Secondary nucleation Stability
在线阅读 下载PDF
QPSO-based algorithm of CSO joint infrared super-resolution and trajectory estimation 被引量:5
3
作者 Liangkui Lin Hui Xu +2 位作者 Dan Xu Wei An Kai Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期405-411,共7页
The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolutio... The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible. 展开更多
关键词 SUPER-RESOLUTION trajectory estimation closely spaced object(CSO) midcourse ballistic infrared focal plane quantumbehaved particle swarm optimization(QPSO).
在线阅读 下载PDF
Characterization and performance of graphene-PbSe thin film heterojunction 被引量:4
4
作者 Bo He Yi-Xuan Ren +2 位作者 Tian-Jun Dai Shuang Hou Xing-Zhao Liu 《Rare Metals》 SCIE EI CAS CSCD 2021年第1期219-224,共6页
An infrared detector with high responsivity based on graphene-PbSe thin film heterojunction was reported.High-quality PbSe thin film and graphene were prepared by molecular beam epitaxy and chemical vapor deposition,r... An infrared detector with high responsivity based on graphene-PbSe thin film heterojunction was reported.High-quality PbSe thin film and graphene were prepared by molecular beam epitaxy and chemical vapor deposition,respectively.The physical characteristics of PbSe thin film and graphene were performed using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS)and Raman measurement.The photo transistor using PbSe thin film as a sensitizer and graphene as a channel to transport excitons exhibits peak responsivity and detectivity up to~420 A·W^(-1) and 5.9×10^(11) Jones(radiation intensity:0.75 mW·cm^(-2))at room temperature in the near-infrared(NIR)region,respectively.The high optical response is attributed to the photo-excited holes transferring from PbSe film to graphene under irradiation.Moreover,it is revealed that the responsivity of graphene-PbSe photo transistor is gate-tunable which is important in photodetectors. 展开更多
关键词 PBSE GRAPHENE HETEROJUNCTION Infrared photodetectors
原文传递
Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation 被引量:3
5
作者 Ke Xiao Qiaolei Han +6 位作者 Yuan Gao Shuai Gu Xin Luo Renxing Lin Jia Zhu Jun Xu Hairen Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期455-462,共8页
The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi... The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h. 展开更多
关键词 Perovskite solar cell Cross-link Defect passivation Stability Moisture tolerance
在线阅读 下载PDF
Parameter estimation of GTD model and RCS extrapolation based on a modified 3D-ESPRIT algorithm 被引量:3
6
作者 ZHENG Shuyu ZHANG Xiaokuan +3 位作者 ZHAO Weichen ZHOU Jianxiong ZONG Binfeng XU Jiahua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1206-1215,共10页
The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo... The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm. 展开更多
关键词 parameter estimation novel spatial smoothing scattering center geometric theory of diffraction(GTD)model radar cross section(RCS)extrapolation
在线阅读 下载PDF
Design and analysis of multi-channel drop filter using dual L defected hexagonal photonic crystal ring resonator 被引量:2
7
作者 D.Saranya Shoba Mohan A.Rajesh 《Digital Communications and Networks》 SCIE 2020年第1期136-143,共8页
In this paper,dual L defected hexagonal Photonic Crystal Ring Resonator(PCRR)using Channel Drop Filter(CDF)is designed for Coarse Wavelength Division Multiplexing(CWDM)systems.In this structure,the external rods of th... In this paper,dual L defected hexagonal Photonic Crystal Ring Resonator(PCRR)using Channel Drop Filter(CDF)is designed for Coarse Wavelength Division Multiplexing(CWDM)systems.In this structure,the external rods of the ring resonator are arranged in a hexagon and the internal rods are removed in L arrangement for introducing defects.Scatter rods are used to prevent leakage.By using the L defected hexagonal resonator,a multi-channel CDF is designed,which exhibits multiple wavelengths of CWDM(1500 nm–1600 nm)region.In addition,the selection of rod size and the position of rods in the proposed multi-channel CDF are validated by varying the radius of coupling and scattering rods,as well as the position of resonators,respectively.By using plane wave expansion and opti Finite Difference Time Domain(FDTD)method,the electromagnetic wave propagation and the photonic band gap are obtained. 展开更多
关键词 Channel drop filter Photonic crystal ring resonator Coarse wavelength division multiplexing Finite difference time domain
在线阅读 下载PDF
Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of ^(87)Rb 被引量:1
8
作者 万剑宏 刘畅 王延辉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期145-149,共5页
We present a practical method to avoid the mis-locking phenomenon in the saturated-absorption-spectrum laser- frequency-locking system and set up a simple theoretical model to explain the abnormal saturated absorption... We present a practical method to avoid the mis-locking phenomenon in the saturated-absorption-spectrum laser- frequency-locking system and set up a simple theoretical model to explain the abnormal saturated absorption spectrum. The method uses the normal and abnormal saturated absorption spectra of the same transition 52S1/2, F = 2-52P3/2, F1 = 3 saturated absorption of the 87Rb D2 resonance line. After subtracting these two signals with the help of electronics, we can obtain a spectrum with a single peak to lock the laser. In our experiment, we use the normal and inverse signals of the transitions 52S1/2, F = 2-52P3/2, F1 = 3 saturated absorption of the 87Rb D2 resonance line to lock a 780-nm distributed feedback (DFB) diode laser. This method improves the long-term locking performance and is suitable for other kinds of diode lasers. 展开更多
关键词 LASER Zeeman effect semiconductor laser
原文传递
Impact of Au Nanocrystal Size and Inter-Nanocrystal Distance on the Storage Characteristics of Memory Devices 被引量:1
9
作者 LAN Xue-Xin OU Xin +8 位作者 XU Bo GONG Chang-Jie LI Run YIN Qiao-Nan XIA Yi-Dong YIN Jiang LIU Zhi-Guo LI Ai-Dong YAN Feng 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第12期161-164,共4页
The charge-storage characteristics of charge trapping memory devices containing different sizes of Au nanocrystals(NCs)sandwiched by Al2O3 tunneling and blocking layers are studied.A strong impact of both Au NC size a... The charge-storage characteristics of charge trapping memory devices containing different sizes of Au nanocrystals(NCs)sandwiched by Al2O3 tunneling and blocking layers are studied.A strong impact of both Au NC size and inter-NC distance on the charge trapping capability of the devices is observed.The total surface area of Au NCs associated with Au NC size is supposed to be a key factor in the charge-storage capability,and the device with larger size of Au NCs and a suitable inter-NC distance will possess better charge trapping capability.Variable range hopping as the lateral charge loss mechanism is considered as the main reason for the decrease of the charge trapping capability when Au NCs grow and overlap neighbors. 展开更多
关键词 TRAPPING SIZE CHARGE
原文传递
Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction 被引量:1
10
作者 Qiuyang Li Penghe Zhang +10 位作者 Haotian Li Lina Chen Kaiyuan Zhou Chunjie Yan Liyuan Li Yongbing Xu Weixin Zhang Bo Liu Hao Meng Ronghua Liu Youwei Du 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期518-525,共8页
We investigate properties of perpendicular anisotropy magnetic tunnel junctions(pMTJs) with a stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer(or recording layer),and obtain the necessary device parameters fro... We investigate properties of perpendicular anisotropy magnetic tunnel junctions(pMTJs) with a stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer(or recording layer),and obtain the necessary device parameters from the tunneling magnetoresistance(TMR) vs.field loops and current-driven magnetization switching experiments.Based on the experimental results and device parameters,we further estimate current-driven switching performance of pMTJ including switching time and power,and their dependence on perpendicular magnetic anisotropy and damping constant of the free layer by SPICE-based circuit simulations.Our results show that the pMTJ cells exhibit a less than 1 ns switching time and write energies <1.4 pJ;meanwhile the lower perpendicular magnetic anisotropy(PMA) and damping constant can further reduce the switching time at the studied range of damping constant α <0.1.Additionally,our results demonstrate that the pMTJs with the thermal stability factor■73 can be easily transformed into spin-torque nano-oscillators from magnetic memory as microwave sources or detectors for telecommunication devices. 展开更多
关键词 magnetic tunnel junctions magnetic tunnel junction(MTJ)model switching time spin torque nano-oscillator
原文传递
Growth and properties of wide spectral white light emitting diodes
11
作者 谢自力 张荣 +8 位作者 傅德颐 刘斌 修向前 华雪梅 赵红 陈鹏 韩平 施毅 郑有炓 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期414-416,共3页
Wide spectral white light emitting diodes have been designed and grown on a sapphire substrate by using a metal-organic chemical vapor deposition system. Three quantum wells with blue-light-emitting, green-light-emitt... Wide spectral white light emitting diodes have been designed and grown on a sapphire substrate by using a metal-organic chemical vapor deposition system. Three quantum wells with blue-light-emitting, green-light-emitting and red-light-emitting structures were grown according to the design. The surface morphology of the film was observed by using atomic force microscopy. The films were characterized by their photoluminescence measurements. X-ray diffraction t9/2/9 scan spectroscopy was carried out on the multi-quantum wells. The secondary fringes of the symmetric ω/2θ X-ray diffraction scan peaks indicate that the thicknesses and the alloy compositions of the individual quantum wells are repeatable throughout the active region. The room temperature photoluminescence spectra of the structures indicate that the white light emission of the multi-quantum wells is obtained. The light spectrum covers 400 700 nm, which is almost the whole visible light spectrum. 展开更多
关键词 metal-organic chemical vapor deposition GaN/InGaN multi-quantum wells group Ⅲ-Ⅴsemiconductor wide spectral white light
原文传递
Effect of Zr and C Co-doping on the Optical Properties and Electronic Structure of TiO_2
12
作者 刘刚 李德华 张茹 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第8期1115-1121,共7页
The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functi... The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for the exchange-correlation potential. Through the current calculations, the density of states (DOS), energy band structure and optical absorption coefficients have been obtained for TiO2 and compared with the doped TiO2, and the influence of electronic structure and optical properties caused by Zr and C co-doping has been presented qualitatively together. The results revealed that the energy band gap has been decreased owing to the doped Zr and C, whereas the optical absorption coefficients have been increased in the region of 400~800 nm and a red shift of absorption band can be found. Accordingly, photo catalytic activity of TiO2 has been enhanced. The current calculations are in good agreement with the experimental data. 展开更多
关键词 density functional theory DOPING electronic structure optical property
在线阅读 下载PDF
Ultrathin 3D radial tandem‐junction photocathode with a high onset potential of 1.15 V for solar hydrogen production
13
作者 Shaobo Zhang Huiting Huang +8 位作者 Zhijie Zhang Jianyong Feng Zongguang Liu Junzhuan Wang Jun Xu Zhaosheng Li Linwei Yu Kunji Chen Zhigang Zou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1842-1850,共9页
Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a r... Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。 展开更多
关键词 Solar hydrogen production 3D radial tandem junction Amorphous silicon photocathode Very thin absorber High onset potential
在线阅读 下载PDF
Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells
14
作者 XIE Zi-Li ZHANG Rong +9 位作者 LIU Bin XIU Xiang-Qian SU Hui LI Yi HUA Xue-Mei ZHAO Hong CHEN Peng HAN Ping SHI Yi ZHENG You-Dou 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第8期247-249,共3页
Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire ... Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire substrate,which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM),which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x−ray diffraction(XRD)θ/2θscan is carried out on the symmetric(0002)of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission,two main emissions of blue and amber light from these MQWs are found,which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs. 展开更多
关键词 INGAN/GAN SAPPHIRE QUANTUM
原文传递
Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN
15
作者 YAN Da-Wei ZHU Zhao-Min +2 位作者 CHENG Jian-Min GU Xiao-Feng LU Hai 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第8期217-220,共4页
The forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN are studied by using temperature-dependent current-voltage(T–I–V)and capacitance-voltage(C–V)measurements.The... The forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN are studied by using temperature-dependent current-voltage(T–I–V)and capacitance-voltage(C–V)measurements.The low-forward-bias I–V curve of the Schottky junction is found to be dominated by trap-assisted tunneling below 400 K,and thus can not be used to deduce the Schottky barrier height(SBH)based on the thermionic emission(TE)model.On the other hand,TE transport mechanism dominates the high-forward-bias region and a modified I–V method is adopted to deduce the effective barrier height.It is found that the estimated SBH(~0.95 eV at 300 K)by the I–V method is~0.20 eV lower than that obtained by the C–V method,which is explained by a barrier inhomogeneity model over the Schottky contact area. 展开更多
关键词 NI/AU SCHOTTKY BARRIER
原文传递
Field-and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions
16
作者 Qingwei Fu Kaiyuan Zhou +8 位作者 Lina Chen Yongbing Xu Tiejun Zhou Dunhui Wang Kequn Chi Hao Meng Bo Liu Ronghua Liu Youwei Du 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第11期98-103,共6页
We report a perpendicular magnetic tunnel junction(p MTJ)cell with a tunnel magnetoresistance(TMR)ratio of nearly 200%at room temperature based on Co Fe B/Ta/Co Fe B as the free layer(FL)and a synthetic antiferromagne... We report a perpendicular magnetic tunnel junction(p MTJ)cell with a tunnel magnetoresistance(TMR)ratio of nearly 200%at room temperature based on Co Fe B/Ta/Co Fe B as the free layer(FL)and a synthetic antiferromagnetic(SAF)multilayer[Pt/Co]/Ru/[Pt/Co]/Ta/Co Fe B as the reference layer(RL).The field-driven magnetization switching measurements show that the p MTJs exhibit an anomalous TMR hysteresis loop.The spin-polarized layer Co Fe B of SAF-RL has a lower critical switching field than that of FL.The reason is related to the interlayer exchange coupling(IEC)through a moderately thick Ta spacer layer among SAF-RLs,which generates a moderate and negative bias magnetic field on Co Fe B of RL.However,the IEC among RLs has a negligible influence on the current-driven magnetization switching of FL and its magnetization dynamics. 展开更多
关键词 dynamics. MAGNETIZATION negligible
原文传递
Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires
17
作者 Qingwei Fu Yong Li +6 位作者 Lina Chen Fusheng Ma Haotian Li Yongbing Xu Bo Liu Ronghua Liu and Youwei Du 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第8期142-146,共5页
Magnonic devices based on spin waves are considered as a new generation of energy-efficient and high-speed devices for storage and processing of information.Here we experimentally demonstrate that three distinct domin... Magnonic devices based on spin waves are considered as a new generation of energy-efficient and high-speed devices for storage and processing of information.Here we experimentally demonstrate that three distinct dominated magneto-dynamic modes are excited simultaneously and coexist in a transversely magnetized ferromagnetic wire by the ferromagnetic resonance(FMR)technique.Besides the uniform FMR mode,the spin-wave well mode,the backward volume magnetostatic spin-wave mode,and the perpendicular standing spin-wave mode are experimentally observed and further confirmed with more detailed spatial profiles by micromagnetic simulation.Furthermore,our experimental approach can also access and reveal damping coefficients of these spin-wave modes,which provides essential information for development of magnonic devices in the future. 展开更多
关键词 technique. FERROMAGNETIC WAVE
原文传递
Nanowire-Based Flexible Sensors for Wearable Electronics,Brain-Computer Interfaces,and Artificial Skins
18
作者 Xiaopan Song Yang Gu +2 位作者 Sheng Wang Junzhuan Wang Linwei Yu 《Electron》 2025年第2期34-59,共26页
Flexible electronic devices with compliant mechanical deformability and electrical reliability have been a focal point of research over the past decade,particularly in the fields of wearable devices,brain-computer int... Flexible electronic devices with compliant mechanical deformability and electrical reliability have been a focal point of research over the past decade,particularly in the fields of wearable devices,brain-computer interfaces(BCIs),and electronic skins.These emerging applications impose stringent requirements on flexible sensors,necessitating not only their ability to withstand dynamic strains and conform to irregular surfaces but also to ensure long-term stable monitoring.To meet these demands,onedimensional nanowires,with high aspect ratios,large surface-to-volume ratios,and programmable geometric engineering,are widely regarded as ideal candidates for constructing high-performance flexible sensors.Various innovative assembly techniques have enabled the effective integration of these nanowires with flexible substrates.More excitingly,semiconductor nanowires,prepared through low-cost and efficient catalytic growth methods,have been successfully employed in the fabrication of highly flexible and stretchable nanoprobes for intracellular sensing.Additionally,nanowire arrays can be deployed on the cerebral cortex to record and analyze neural activity,opening new avenues for the treatment of neurological disorders.This review systematically examines recent advancements in nanowire-based flexible sensing technologies applied to wearable electronics,BCIs,and electronic skins,highlighting key design principles,operational mechanisms,and technological milestones achieved through growth,assembly,and transfer processes.These developments collectively advance high-performance health monitoring,deepen our understanding of neural activities,and facilitate the creation of novel,flexible,and stretchable electronic skins.Finally,we also present a summary and perspectives on the current challenges and future opportunities for nanowirebased flexible sensors. 展开更多
关键词 artificial skins brain-computer interfaces flexible sensors NANOWIRE wearable electronics
在线阅读 下载PDF
Conductive dendrite engineering of single-crystalline two-dimensional dielectric memristors
19
作者 Yu Kang Xingyu Zhai +11 位作者 Quan Yang Baoshi Qiao Zheng Bian Haohan Chen Huan Hu Yang Xu Ming Tian Neng Wan Wenchao Chen Yang Chai Yuda Zhao Bin Yu 《The Innovation》 2025年第6期74-81,73,共9页
Ultralow-power non-volatile memristors are key elements in electronics.Generally,power reduction of memristors compromises data retention,a challenge known as the“power-retention dilemma,”due to the stochastic forma... Ultralow-power non-volatile memristors are key elements in electronics.Generally,power reduction of memristors compromises data retention,a challenge known as the“power-retention dilemma,”due to the stochastic formation of conductive dendrites in resistive-switching materials.Here,we report the results of conductive dendrite engineering in single-crystalline two-dimensional(2D)dielectrics in which directional control of filamentary distribution is possible.We find that the single-vacancy density(nSV)of single-crystalline hexagonal boron nitride(h-BN)plays an essential role in regulating conductive dendrite growth,supported by scanning joule expansion microscopy(SJEM).With optimized nSV,random dendrite growth is largely limited,and electrons hop between the neighboring Ag nanoclusters in vertical channels.The corresponding model was established to probe the relationship between nSV and memristor operating voltage.The conductive channel confinement in the vertical orientation contributes to long-retention non-volatile memristors with ultralow switch voltages(set:26 mV;reset:135 mV),excellent power efficiency(4 fW standby and a switching energy of 72 pJ)while keeping a high on/off resistance ratio of 108.Even at a record-low compliance current of 10 nA,memristors retains very robust nonvolatile,multiple resistive states with an operating voltage less than 120 mV(the per-transition power low as 900 pW). 展开更多
关键词 conductive dendrites MEMRISTORS directional control filamentary distribution data retention conductive dendrite engineering power retention dilemma single crystalline two dimensional dielectrics power efficiency
原文传递
Greenhouse-inspired light-driven inorganic molten salt Li-CO_(2) battery operating at room temperature
20
作者 Shijie Yang Guangbin Zhang +15 位作者 Zijie Lin Zhihuan Li Min Wang Sheng Wang Yuhui Sun Zhongwei Yu Pei Zhang Linjiao Ren Liying Jiang Xiaoying Song Yalong Zhao Changshun Wang Jing Wu Linglong Zhang Hucheng Song Jun Xu 《Journal of Energy Chemistry》 2025年第10期337-346,共10页
Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutral... Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutrality.However,the poor Li-ion conductivity of the molten-salt electrolytes at room temperature(RT)makes these batteries lose most of their capacity and power as the temperature falls below 80℃.Here,inspired by the greenhouse effect,we report an RT molten salt Li-CO_(2)battery where solar energy can be efficiently harvested and converted into heat that is further localized on the cathode consisting of plasmonic ruthenium(Ru)catalysts and Li_(2)CO_(3)-based products via a greenhouse-like phenomenon.As a result,the solar-driven molten salt Li-CO_(2)battery demonstrates a larger full discharge/charge capacity of 9.5 mA h/8.1 mA h,and a longer cycle lifespan of 250 cycles at 500 mA/g with a limited capacity of 500 mA h/g at RT than the molten salt Li-CO_(2)battery at 130℃.Notably,the average temperature of the cathode increases by 8℃ after discharge to 0.75 mA h,which indicates the infrared radiation from Ru catalysts can be effectively suppressed by discharged Li_(2)CO_(3)-based products.This battery technology paves the way for developing low-temperature molten salt energy storage devices. 展开更多
关键词 Li-CO_(2)battery Greenhouse-inspired thermal localization Solar photothermal battery Plasmon-enhanced cathode Room temperature molten saltbatteries
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部