Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti...Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printin...This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.展开更多
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene...This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.展开更多
The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technol...The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.展开更多
Objective:The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods.Conditions such as anxiety,depression,stress,bipolar disorder(BD),a...Objective:The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods.Conditions such as anxiety,depression,stress,bipolar disorder(BD),and autism spectrum disorder(ASD)frequently arise from the complex interplay of demographic,biological,and socioeconomic factors,resulting in aggravated symptoms.This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions.Methods:The preferred reporting items for systematic reviews and meta-analyses(PRISMA)framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025.The potential impact of machine intelligence methods was assessed by considering various strategies,hybridization of algorithms,tools,techniques,and datasets,and their applicability.Results:Through a systematic review of studies concentrating on the prediction and evaluation of mental disorders using machine intelligence algorithms,advancements,limitations,and gaps in current methodologies were highlighted.The datasets and tools utilized in these investigations were examined,offering a detailed overview of the status of computational models in understanding and diagnosing mental health disorders.Recent research indicated considerable improvements in diagnostic accuracy and treatment effectiveness,particularly for depression and anxiety,which have shown the greatest methodological diversity and notable advancements in machine intelligence.Conclusions:Despite these improvements,challenges persist,including the need for more diverse datasets,ethical issues surrounding data privacy and algorithmic bias,and obstacles to integrating these technologies into clinical settings.This synthesis emphasizes the transformative potential of machine intelligence in enhancing mental healthcare.展开更多
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n...The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been doc...The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been documented.This study aims to answer the following questions:Will the typical soums in the SRB become more overgrazed in the future?What optimal strategy should be implemented?Multisource data were integrated and utilized to model the pastoral system of typical soums using a system dynamics approach.Future scenarios under three SSP-RCPs were projected using the model.The conclusions are as follows:(1)From upstream to downstream,rational scenarios for pastoral system transferred from SSP1-RCP2.6 to SSP2-RCP4.5,which reflect improved productivity at the expense of ecosystem stability.(2)Compared with that during the historical period of 2000-2020,the projected carrying capacity of the soums decreases by 15.2%-37.3%,whereas the number of livestock continues to increase.Consequently,the stocking rate is expected to increase from 0.32-1.16 during 2000-2020 to 1.26-2.02 during 2021-2050,indicating that rangeland will become more overloaded.(3)A livestock reduction strategy based on future livestock stock and grassland carrying capacity scenarios was proposed to maintain a dynamic forage-livestock equilibrium.It is suggested that reducing livestock is a practical option for harmonizing grassland conservation with livestock husbandry development.展开更多
This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis...This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-ba...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.展开更多
In this study, thermal–hydraulic parameters inside the containment of aWWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1....In this study, thermal–hydraulic parameters inside the containment of aWWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.8.6 codes), and the effect of the spray system as an engineering safety feature on parameters mitigation is analyzed with the former code. Along with the development of the accident from design basis accident to beyond design basis accident, the Zircaloy–steam reaction becomes the source of in-vessel hydrogen generation. Hydrogen distribution inside the containment is simulated for a long time (using CONTAIN and MELCOR), and the effect of recombiners on its mitigation is analyzed (using MELCOR). Thermal–hydraulic parameters and hydrogen distribution profiles are presented as the outcome of the investigation. By activating the spray system, the peak points of pressure and temperature occur in the short time and remain belowthe maximumdesign values along the accident time. It is also shown that recombiners have a reliable effect on reducing the hydrogen concentration below flame propagation limit in the accident localization area. The parameters predicted by CONTAIN and MELCOR are in good agreement with the final safety analysis report. The noted discrepancies are discussed and explained.展开更多
In this paper, methacrylated γ-PGA(m PGA) precursor was synthesized via reaction between γ-PGA and glycidyl methacrylate(GMA). Hydrogels from this precursor were prepared under 365 nm ultraviolet irradiation. Th...In this paper, methacrylated γ-PGA(m PGA) precursor was synthesized via reaction between γ-PGA and glycidyl methacrylate(GMA). Hydrogels from this precursor were prepared under 365 nm ultraviolet irradiation. The swelling behavior and mechanical properties were studied in detail as functions of the degree of substitution(DS), precursor concentration, and environmental p H. Results showed that the crosslink density, swelling kinetics and mechanical properties of the hdyrogel could be tailored by adjusting the DS and concentration of the precursor as well as the environmental p H. Three-dimensional photo-encapsulation of swine cartilage chondrocytes and Live/Dead assay proved the cytocompatibility of the hydrogel.展开更多
A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylben...A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.展开更多
In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and to prevent the solidification of the wax fraction. The high temperature and high pressure will induce the addition...In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and to prevent the solidification of the wax fraction. The high temperature and high pressure will induce the additional stress in the pipeline, which results in the upheaval buckling of the pipeline. If such expansion is resisted, e.g., by the frictional effects of the foundation soil over a kilometer or of a pipeline, the compressive axial stress will be set up in the pipe-wall. When the stress exceeds the constraint of the foundation soil on the pipeline, suddenly-deforming will occur to release the internal stress, similar to the sudden deformation of the strut due to stability problems. The upheaval buckling may jeopardize the structural integrity of the pipeline. Therefore, effective engineering measures against this phenomenon play an important role in the submarine pipeline design. In terms of the pipeline installation and protection measures commonly used in Bohai Gulf, three engineering measures are investigated in great details. An analytical method is introduced and developed to consider the protection effect of the anti-upheaval buckling of the pipeline. The analysis results show that the amplitude of the initial imperfection has a great effect on the pipeline thermal upheaval buckling. Both trenching and burial and discrete dumping are effective techniques in preventing the pipeline from buckling. The initial imperfection and operation conditions of the pipelines determine the covered depth and the number of layers of the protection measures.展开更多
Treatment for central nervous system(CNS)disorders is known to be limited by the low regenerative potential of neurons,and thus neurodegenerative insults became known as nearly irreversible ailments.Functional recover...Treatment for central nervous system(CNS)disorders is known to be limited by the low regenerative potential of neurons,and thus neurodegenerative insults became known as nearly irreversible ailments.Functional recovery for acquired CNS disorders,such as spinal cord injury(SCI),traumatic brain injury,ischemic stroke,Alzheimer’s disease,Parkinson’s disease,multiple sclerosis(MS),and for congenital CNS abnormalities,such as spina bifida,is not spontaneous and effective treatments are limited to non-existent.Research in the past decades has proven the regenerative potential of stem cells,especially that of mesenchymal stromal/stem cells(MSCs)from various origins,such as bone marrow,placenta,and adipose tissue.展开更多
Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and e...Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and engineering failures have a demonstrated relationship to groundwater level fluctuation induced by land creation engineering.In this work,we adopted a typical large-scale land creation project,Yan’an New City in Shaanxi province,West China,as our study area.Prior to conducting the main experiment,preliminary field investigation and groundwater level monitoring were conducted to determine the groundwater fluctuation trend induced by land creation engineering.Although a blind drainage system was implemented,the depth aspect of groundwater level changes after large-scale land creation still needed to be addressed.To study the degree of impact and the settlement mechanism induced by the rising groundwater level,we conducted a Water Immersion Test(WIT)in a typical land creation site for 107 days.The rising groundwater level was simulated by injecting water from the bottom of the filling foundation.During the WIT,the soil water content,surface subsidence,and internal settlement of soil at different depths were obtained.Surface subsidence development could be categorized into four stages during the water level increase.The second stage,which is defined as the point when the groundwater level rises to 10 m,marked the critical point in the process.Furthermore,it was ascertained that the local settlement in regions that were originally composed of steep slopes is larger than that in originally flat areas.In addition,ground cracks and sinkholes in the study area were inspected;and it was determined that they would become new channels that would accelerate water infiltration and exacerbate the settlement.Based on the results from our field investigation and testing,several suggestions are proposed for land creation projects to mitigate issues associated with construction-induced groundwater level rising.展开更多
Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extens...Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.展开更多
Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and...Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and efficient introduction of low energy coincidence site lattice boundaries through grain boundary engineering resulted in an apparent improvement of the intergranular stress corrosion crack resistance of austenite stainless steel.展开更多
基金supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science COMBS(CE230100006)the Australian Research Council grants DP220100488 and DE230100964funded by the Australian Government.
文摘Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
文摘This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.
基金the Engineering and Physical Sciences Research Council(EPSRC)for funding the researchUK India Education Research Initiative(UKIERI)for funding support.
文摘This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.
基金supported by the grants PID2020-113371RA-C22 and TED2021-130845A-C32,funded by MCIN/AEI/10.13039/501100011033.M.Marín-García,R.González-OlmosC.Gómez-Canela are members of the GESPA group(Grup d’Enginyeria i Simulacióde Processos Ambientals)at IQS-URL,which has been acknowledged as a Consolidated Research Group by the Government of Catalonia(No.2021-SGR-00321)+1 种基金In addition,M.Marín-García has been awarded a public grant for the Investigo Programme,aimed at hiring young job seekers to undertake research and innovation projects under the Recovery,Transformation,and Resilience Plan(PRTR),European Union Next Generation,for the year 2022,through the Government of Catalonia and the Spanish Ministry for Work and Social Economy(No.100045ID16)Ana Belén Cuenca for her support and expertise,which helped to confirm the proposed reaction mechanism involved in the UV photolysis of cloperastine.
文摘The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.
文摘Objective:The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods.Conditions such as anxiety,depression,stress,bipolar disorder(BD),and autism spectrum disorder(ASD)frequently arise from the complex interplay of demographic,biological,and socioeconomic factors,resulting in aggravated symptoms.This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions.Methods:The preferred reporting items for systematic reviews and meta-analyses(PRISMA)framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025.The potential impact of machine intelligence methods was assessed by considering various strategies,hybridization of algorithms,tools,techniques,and datasets,and their applicability.Results:Through a systematic review of studies concentrating on the prediction and evaluation of mental disorders using machine intelligence algorithms,advancements,limitations,and gaps in current methodologies were highlighted.The datasets and tools utilized in these investigations were examined,offering a detailed overview of the status of computational models in understanding and diagnosing mental health disorders.Recent research indicated considerable improvements in diagnostic accuracy and treatment effectiveness,particularly for depression and anxiety,which have shown the greatest methodological diversity and notable advancements in machine intelligence.Conclusions:Despite these improvements,challenges persist,including the need for more diverse datasets,ethical issues surrounding data privacy and algorithmic bias,and obstacles to integrating these technologies into clinical settings.This synthesis emphasizes the transformative potential of machine intelligence in enhancing mental healthcare.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A10044950).
文摘The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金National Natural Science Foundation of China,No.32161143025,No.42371283,No.W2412155National Key R&D Program of China,No.2022YFE0119200。
文摘The Selenge River Basin(SRB)in Mongolia has faced ecosystem degradation because of climate change and overloading.The dynamics of the pastoral system and the extent of overload under future scenarios have not been documented.This study aims to answer the following questions:Will the typical soums in the SRB become more overgrazed in the future?What optimal strategy should be implemented?Multisource data were integrated and utilized to model the pastoral system of typical soums using a system dynamics approach.Future scenarios under three SSP-RCPs were projected using the model.The conclusions are as follows:(1)From upstream to downstream,rational scenarios for pastoral system transferred from SSP1-RCP2.6 to SSP2-RCP4.5,which reflect improved productivity at the expense of ecosystem stability.(2)Compared with that during the historical period of 2000-2020,the projected carrying capacity of the soums decreases by 15.2%-37.3%,whereas the number of livestock continues to increase.Consequently,the stocking rate is expected to increase from 0.32-1.16 during 2000-2020 to 1.26-2.02 during 2021-2050,indicating that rangeland will become more overloaded.(3)A livestock reduction strategy based on future livestock stock and grassland carrying capacity scenarios was proposed to maintain a dynamic forage-livestock equilibrium.It is suggested that reducing livestock is a practical option for harmonizing grassland conservation with livestock husbandry development.
基金The National University of Mongolia,No.P2024-4814The Mongolian Science and Technology Foundation,No.CHN-2022/274The‘Chey Institute for Advanced Studies’International Scholar Exchange Fellowship for the Academic Year of 2025-2026。
文摘This study investigates climate-and human-induced hydrological changes in the Zavkhan River-Khyargas Lake Basin,a highly sensitive arid and semi-arid region of Central Asia.Using Mann-Kendall,innovative trend analysis,and Sen's slope estimation methods,historical climate trends(1980-2100)were analyzed,while land cover changes represented human impacts.Future projections were simulated using the MIROC model with Shared Socioeconomic Pathways(SSPs)and the Tank model.Results show that during the past 40 years,air temperature significantly increased(Z=3.93^(***)),while precipitation(Z=-1.54^(*))and river flow(Z=-1.73^(*))both declined.The Khyargas Lake water level dropped markedly(Z=-5.57***).Land cover analysis reveals expanded cropland and impervious areas due to human activity.Under the SSP1.26 scenario,which assumes minimal climate change,air temperature is projected to rise by 2.0℃,precipitation by 21.8 mm,and river discharge by 1.61 m^(3)/s between 2000 and 2100.These findings indicate that both global warming and intensified land use have substantially altered hydrological and climatic processes in the basin,highlighting the vulnerability of western Mongolia's water resources to combined climatic and anthropogenic influence.
基金supported by the National Program for Support of Top-notch Young Professionals and the Australian Government through the Australian Renewable Energy Agency(ARENA)
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.
基金Part of this research has been developed under the auspices of EU H2020 Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie Actions COFUND Grant SIRCIW,Agreement No.663830.
文摘In this study, thermal–hydraulic parameters inside the containment of aWWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.8.6 codes), and the effect of the spray system as an engineering safety feature on parameters mitigation is analyzed with the former code. Along with the development of the accident from design basis accident to beyond design basis accident, the Zircaloy–steam reaction becomes the source of in-vessel hydrogen generation. Hydrogen distribution inside the containment is simulated for a long time (using CONTAIN and MELCOR), and the effect of recombiners on its mitigation is analyzed (using MELCOR). Thermal–hydraulic parameters and hydrogen distribution profiles are presented as the outcome of the investigation. By activating the spray system, the peak points of pressure and temperature occur in the short time and remain belowthe maximumdesign values along the accident time. It is also shown that recombiners have a reliable effect on reducing the hydrogen concentration below flame propagation limit in the accident localization area. The parameters predicted by CONTAIN and MELCOR are in good agreement with the final safety analysis report. The noted discrepancies are discussed and explained.
基金supported by the National Natural Science Foundation of China(No.21004080)the Program for New Century Excellent Talents in Universities(No.NCET-09-0818)of the Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities(No.101GPY41)
文摘In this paper, methacrylated γ-PGA(m PGA) precursor was synthesized via reaction between γ-PGA and glycidyl methacrylate(GMA). Hydrogels from this precursor were prepared under 365 nm ultraviolet irradiation. The swelling behavior and mechanical properties were studied in detail as functions of the degree of substitution(DS), precursor concentration, and environmental p H. Results showed that the crosslink density, swelling kinetics and mechanical properties of the hdyrogel could be tailored by adjusting the DS and concentration of the precursor as well as the environmental p H. Three-dimensional photo-encapsulation of swine cartilage chondrocytes and Live/Dead assay proved the cytocompatibility of the hydrogel.
文摘A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.
基金Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51021004)the National Natural Science Foundation of China(No.40776055)the Foundation of the State Key Laborary of Ocean Engineering (No.1002)
文摘In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and to prevent the solidification of the wax fraction. The high temperature and high pressure will induce the additional stress in the pipeline, which results in the upheaval buckling of the pipeline. If such expansion is resisted, e.g., by the frictional effects of the foundation soil over a kilometer or of a pipeline, the compressive axial stress will be set up in the pipe-wall. When the stress exceeds the constraint of the foundation soil on the pipeline, suddenly-deforming will occur to release the internal stress, similar to the sudden deformation of the strut due to stability problems. The upheaval buckling may jeopardize the structural integrity of the pipeline. Therefore, effective engineering measures against this phenomenon play an important role in the submarine pipeline design. In terms of the pipeline installation and protection measures commonly used in Bohai Gulf, three engineering measures are investigated in great details. An analytical method is introduced and developed to consider the protection effect of the anti-upheaval buckling of the pipeline. The analysis results show that the amplitude of the initial imperfection has a great effect on the pipeline thermal upheaval buckling. Both trenching and burial and discrete dumping are effective techniques in preventing the pipeline from buckling. The initial imperfection and operation conditions of the pipelines determine the covered depth and the number of layers of the protection measures.
基金supported by Shriner’s Hospital for Children(85108-NCA-19)the NIH(5R01NS100761)。
文摘Treatment for central nervous system(CNS)disorders is known to be limited by the low regenerative potential of neurons,and thus neurodegenerative insults became known as nearly irreversible ailments.Functional recovery for acquired CNS disorders,such as spinal cord injury(SCI),traumatic brain injury,ischemic stroke,Alzheimer’s disease,Parkinson’s disease,multiple sclerosis(MS),and for congenital CNS abnormalities,such as spina bifida,is not spontaneous and effective treatments are limited to non-existent.Research in the past decades has proven the regenerative potential of stem cells,especially that of mesenchymal stromal/stem cells(MSCs)from various origins,such as bone marrow,placenta,and adipose tissue.
基金financial support from National Natural Science Foundation of China (Project No. 41902299 41672305)+2 种基金the Key Science and Technology Program of Shaanxi Province (Project No. 2017ZDXM-SF-078, 2017ZDXM-SF-082)National Key Research and Development Program of China (2018YFC1504700)Shaanxi new-star plan of science and technology (Project No. 2018KJXX020)
文摘Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and engineering failures have a demonstrated relationship to groundwater level fluctuation induced by land creation engineering.In this work,we adopted a typical large-scale land creation project,Yan’an New City in Shaanxi province,West China,as our study area.Prior to conducting the main experiment,preliminary field investigation and groundwater level monitoring were conducted to determine the groundwater fluctuation trend induced by land creation engineering.Although a blind drainage system was implemented,the depth aspect of groundwater level changes after large-scale land creation still needed to be addressed.To study the degree of impact and the settlement mechanism induced by the rising groundwater level,we conducted a Water Immersion Test(WIT)in a typical land creation site for 107 days.The rising groundwater level was simulated by injecting water from the bottom of the filling foundation.During the WIT,the soil water content,surface subsidence,and internal settlement of soil at different depths were obtained.Surface subsidence development could be categorized into four stages during the water level increase.The second stage,which is defined as the point when the groundwater level rises to 10 m,marked the critical point in the process.Furthermore,it was ascertained that the local settlement in regions that were originally composed of steep slopes is larger than that in originally flat areas.In addition,ground cracks and sinkholes in the study area were inspected;and it was determined that they would become new channels that would accelerate water infiltration and exacerbate the settlement.Based on the results from our field investigation and testing,several suggestions are proposed for land creation projects to mitigate issues associated with construction-induced groundwater level rising.
基金funded by the National Natural Science Foundation of China(42372334)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G05)。
文摘Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.
文摘Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and efficient introduction of low energy coincidence site lattice boundaries through grain boundary engineering resulted in an apparent improvement of the intergranular stress corrosion crack resistance of austenite stainless steel.