The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front...The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.展开更多
Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm...Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm-summer grass.Natural Cordyceps sinensis with parasitic hosts is difficult to be collected and the recent findings on its potential pharmacological functions,resulted in skyrocketing prices.Therefore,finding a mass-production method or an alternative for C.sinensis products is a top-priority task.In this review,we describe current status of Cordyceps research and its recent developments in Taiwan.The content and pharmacological activities of four major industrial species of Cordyceps(C.sinensis,Cordyceps militaris,Cordyceps cicadae and Cordyceps sobolifera)used in Taiwan,were reviewed.Moreover,we highlighted the effect of using different methods of fermentation and production on the morphology and chemical content of Cordyceps sp.Finally,we summarized the bottle-necks and challenges facing Cordyceps research as well as we proposed future road map for Cordyceps industry in Taiwan.展开更多
Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the field...Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.展开更多
Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the field...Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.展开更多
Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the field...Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.展开更多
Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the field...Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.展开更多
The application of traditional Chinese medicine in skincare formula development was expounded from the views of“symptom,theory,method,prescription,medicine and effect”.Traditional Chinese medicine prescriptions were...The application of traditional Chinese medicine in skincare formula development was expounded from the views of“symptom,theory,method,prescription,medicine and effect”.Traditional Chinese medicine prescriptions were improved according to the laws and regulations for China’s cosmetic industry and by the modern scientific and technological means,which had important guiding significance for the research and development of plant-based functional skincare products.The problems in concept claim and quality control standard,and the problems of market confusion,which were ascribed to the lack of basic research in the application of Chinese herbal cosmetics,were pointed out.The future development direction of plant-based functional cosmetics guided by TCM theory was prospected.展开更多
Continued population growth and limited land availability will facilitate the utilization of plant growth regulators(PGRs)in sustainable agriculture to enhance crop yields.The PGRs industry has progressed significantl...Continued population growth and limited land availability will facilitate the utilization of plant growth regulators(PGRs)in sustainable agriculture to enhance crop yields.The PGRs industry has progressed significantly from 2003 to 2022,resulting in a surge of research activities in the field of PGRs.However,the existing studies lack the exploration of the industry trends,as well as the challenges and opportunities for innovation in PGR development.Here,we analyze the dynamic trends within the PGR industry by examining key factors such as the PGR market,patent applications,scientific papers,and PGRs registrations from 2003 to 2022.Additionally,we investigate the specific effects of major agrochemicals on plants.These data will provide essential insights into the ongoing evolution and future trends of PGRs.Importantly,it is crucial to actively pursue research and development(R&D)of a broader range of PGRs to respond to the current needs of the PGR market and drive further growth therein.展开更多
1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many ...1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many other fields,making them an important basis in the field of three-dimensional(3D)printing.Problems and challenges related to material types,powder properties,formability,viscoelasticity,and so forth also share common features.For example,many metal materials are used in the field of aviation,while metals,polymers,and inorganic materials are used in the field of biomedicine.The most widely used materials in biomedicine are biocompatible.Various homogeneous and non-homogeneous composites are also available for 3D printing,and impose an additional challenge in additive manufacturing;the use of heterogeneous composites in 3D printing is particularly challenging.展开更多
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es...Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.展开更多
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more ob...In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.展开更多
In the past two decades, the oxy-fuel combustion of pulverized coal has been extensively developed, leading to the completion of several large industrial pilot oxy-fuel plants worldwide. Various types of oxy-fuel burn...In the past two decades, the oxy-fuel combustion of pulverized coal has been extensively developed, leading to the completion of several large industrial pilot oxy-fuel plants worldwide. Various types of oxy-fuel burners have been designed and tested in largescale pilot plants as key components of oxy-fuel combustion. These burners face major challenges in terms of their flame stability because of their decreasing stream momentum ratio and increasing carbon dioxide concentration. However, it offers flexibility in adjusting the oxygen concentration in each burner stream. This study aims to provide a comprehensive review of the state-of-the-art knowledge on oxy-coal burner design and operation in power plants. First, the combustion characteristics under oxy-fuel conditions are briefly introduced. Subsequently, the principal requirements and fundamental parameters of the oxy-coal burners are discussed. The development process of oxy-fuel burners is also presented. Moreover, a compatible design strategy and scaling-up techniques are described for oxy-coal burners developed by the authors over the past ten years. The performances of oxy-coal burners in three large pilot oxy-fuel plants worldwide are summarized and compared. Finally, concluding remarks are provided and potential research needs are suggested.展开更多
Objective:This study was performed to investigate the relationship between the human melanogenesis and antioxidant systems and to further confirm the synergistic effect of oxyresveratrol(OXYR)and resveratrol(RES)in hu...Objective:This study was performed to investigate the relationship between the human melanogenesis and antioxidant systems and to further confirm the synergistic effect of oxyresveratrol(OXYR)and resveratrol(RES)in human epidermal melanocyte cell line.Methods:The human epidermal melanocyte line PIG1 cells were divided into the UV groups and control group,treated with different doses of UVB and without UVB,respectively.MTT assay and flow cytometry were used to detect cell viability and apoptosis.The expression of Nrf2/HO-1 and melanogenesis-associated proteins/genes was measured by Western blotting and real-time qPCR(RT-qPCR).pCMV6-XL5-Nrf2 was used to upregulate the expression of Nrf2.Subsequently,the proteins/genes levels of Nrf2/HO-1 and tyrosinase(TYR),melanin/eumelanin content,and reactive oxygen species(ROS)were analyzed.Isobologram analysis and cell experiment were used to analyze whether OXYR and RES inhibit TYR synergistically.Western blotting,RT-qPCR,and NaOH splitting method were used to determine the Nrf2/HO-1 and melanogenesis-associated proteins/genes expression and melanin content to evaluate the efficacy of OXYR and RES.Results:The activated Nrf2 and HO-1 eliminated ROS produced by UVB irradiation.The melanogenesis-associated proteins/genes of melanocyte-inducing transcription factor(MITF,P<0.01 on protein expression),TYR(both P<0.01),TYR-related protein(TRP)-1(both P<0.05),and TRP2(P<0.05 on mRNA expression)were activated in PIG1 cells by UVB irradiation.Simultaneously,the upregulation of Nrf2 significantly reduced melanogenesis formation(P<0.001)and TYR level(P<0.01 on protein expression).Moreover,OXYR and RES synergistically inhibited TYR activity(P<0.001)and reduced melanin content(P<0.001).Conclusions:A microbalance exists between Nrf2/HO-1 signaling and melanogenesis production in the UVBinduced responses of melanocytes.Simultaneously,OXYR enhances the ability of RES to inhibit melanin production.展开更多
Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and ...Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway.展开更多
Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to theirpharmacological applications in development of marine drugs for treatment of various human di...Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to theirpharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800Conus species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins).This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized.Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to minediverse Conus venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficientway. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, andtheir binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides andmultiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and designof potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.展开更多
This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 ...This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.展开更多
The development of new/different management and feeding strategies to stimulate gut development and health in newly-weaned pigs, in order to improve growth performance while minimizing the use of antimicrobial compoun...The development of new/different management and feeding strategies to stimulate gut development and health in newly-weaned pigs, in order to improve growth performance while minimizing the use of antimicrobial compounds such as antibiotic growth promotants (AGP) and heavy mineral compounds, is essential for the long-term sustainability of the pig industry. Factors including the sub-optimal intake of nutrients and energy, inappropriate microbiota biomass and (or) balance, immature and compromised immune function, and psychosomatic factors caused by weaning can compromise both the efficiency of digestion and absorption and intestinal barrier function through mucosal damage and alteration of tight junction integrity. As a consequence, pigs at weaning are highly susceptible to pathogenic enteric conditions such as post-weaning diarrhea that may be caused by serotypes of enterotoxigenic Escherichia coil Many dietary components, e.g., protein, fiber, feed additives and minerals, are known to influence microbial growth in the gastrointestinal tract that in turn can impact upon pig growth and health, although the relationships between these are sometimes not necessarily apparent or obvious. In a world climate of increased scrutiny over the use of antibiotics per se in pig production, certain feed additives are seen as alternatives/replacements to antibiotics, and have evolved in some cases to have important roles in everyday commercial pig nutrition. Nevertheless and in general, there remains inconsistency and variability in the efficacy of some feed additives and in cases of severe disease outbreaks, for example, therapeutic antibiotics and/or heavy minerals such as zinc oxide (ZnO) are generally relied upon. If feed ingredients and (or) feed additives are to be used with greater regularity and reliability, then it is necessary to better understand the mechanisms whereby antibiotics and minerals such as ZnO influence animal physiology, in conjunction with the use of appropriate challenge models and in vitro and in vivo techniques.展开更多
After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i....After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.展开更多
基金Key R&D Plan of Liaoning Province(No.202000357-JH13/103):Construction of Liaoning Traditional Chinese Medicine Industry Technology Innovation Research InstituteNational Key Research and Development Plan Special Project(No.2019JH2/10300040)。
文摘The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.
文摘Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm-summer grass.Natural Cordyceps sinensis with parasitic hosts is difficult to be collected and the recent findings on its potential pharmacological functions,resulted in skyrocketing prices.Therefore,finding a mass-production method or an alternative for C.sinensis products is a top-priority task.In this review,we describe current status of Cordyceps research and its recent developments in Taiwan.The content and pharmacological activities of four major industrial species of Cordyceps(C.sinensis,Cordyceps militaris,Cordyceps cicadae and Cordyceps sobolifera)used in Taiwan,were reviewed.Moreover,we highlighted the effect of using different methods of fermentation and production on the morphology and chemical content of Cordyceps sp.Finally,we summarized the bottle-necks and challenges facing Cordyceps research as well as we proposed future road map for Cordyceps industry in Taiwan.
文摘Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.
文摘Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.
文摘Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.
文摘Dear Researchers,Journal of Architectural Research and Development is an international peer-reviewed and high quality open access journal which is devoted to establish a bridge between theory and practice in the fields of architectural and design research,urban planning and built environment research.
文摘The application of traditional Chinese medicine in skincare formula development was expounded from the views of“symptom,theory,method,prescription,medicine and effect”.Traditional Chinese medicine prescriptions were improved according to the laws and regulations for China’s cosmetic industry and by the modern scientific and technological means,which had important guiding significance for the research and development of plant-based functional skincare products.The problems in concept claim and quality control standard,and the problems of market confusion,which were ascribed to the lack of basic research in the application of Chinese herbal cosmetics,were pointed out.The future development direction of plant-based functional cosmetics guided by TCM theory was prospected.
基金supported by the National Natural Science Foundation of China(32125033,32260687 and 32260688)China Postdoctoral Science Foundation(2022M710915).
文摘Continued population growth and limited land availability will facilitate the utilization of plant growth regulators(PGRs)in sustainable agriculture to enhance crop yields.The PGRs industry has progressed significantly from 2003 to 2022,resulting in a surge of research activities in the field of PGRs.However,the existing studies lack the exploration of the industry trends,as well as the challenges and opportunities for innovation in PGR development.Here,we analyze the dynamic trends within the PGR industry by examining key factors such as the PGR market,patent applications,scientific papers,and PGRs registrations from 2003 to 2022.Additionally,we investigate the specific effects of major agrochemicals on plants.These data will provide essential insights into the ongoing evolution and future trends of PGRs.Importantly,it is crucial to actively pursue research and development(R&D)of a broader range of PGRs to respond to the current needs of the PGR market and drive further growth therein.
文摘1.Research and development(R&D)and the challenges of raw materials for medical additive manufacturing Raw materials for medical additive manufacturing have a wide range of commonalities that are also seen in many other fields,making them an important basis in the field of three-dimensional(3D)printing.Problems and challenges related to material types,powder properties,formability,viscoelasticity,and so forth also share common features.For example,many metal materials are used in the field of aviation,while metals,polymers,and inorganic materials are used in the field of biomedicine.The most widely used materials in biomedicine are biocompatible.Various homogeneous and non-homogeneous composites are also available for 3D printing,and impose an additional challenge in additive manufacturing;the use of heterogeneous composites in 3D printing is particularly challenging.
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science and Technology Project(2023ZZ14).
文摘Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
文摘In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.
基金supported by the National Natural Science Foundation of China(Grant No. 51906075)Key Research and Development Program of Department of Science and Technology of Jiangxi Province(Grant No. 20223BBG74009)Science and Technology Innovation Project for Carbon Peak and Carbon Neutrality of Jiangxi Carbon Neutralization Research Center(Grant No. 2022JXST01)。
文摘In the past two decades, the oxy-fuel combustion of pulverized coal has been extensively developed, leading to the completion of several large industrial pilot oxy-fuel plants worldwide. Various types of oxy-fuel burners have been designed and tested in largescale pilot plants as key components of oxy-fuel combustion. These burners face major challenges in terms of their flame stability because of their decreasing stream momentum ratio and increasing carbon dioxide concentration. However, it offers flexibility in adjusting the oxygen concentration in each burner stream. This study aims to provide a comprehensive review of the state-of-the-art knowledge on oxy-coal burner design and operation in power plants. First, the combustion characteristics under oxy-fuel conditions are briefly introduced. Subsequently, the principal requirements and fundamental parameters of the oxy-coal burners are discussed. The development process of oxy-fuel burners is also presented. Moreover, a compatible design strategy and scaling-up techniques are described for oxy-coal burners developed by the authors over the past ten years. The performances of oxy-coal burners in three large pilot oxy-fuel plants worldwide are summarized and compared. Finally, concluding remarks are provided and potential research needs are suggested.
基金The study was supported by the National Natural Science Foundation of China(No.81602773).
文摘Objective:This study was performed to investigate the relationship between the human melanogenesis and antioxidant systems and to further confirm the synergistic effect of oxyresveratrol(OXYR)and resveratrol(RES)in human epidermal melanocyte cell line.Methods:The human epidermal melanocyte line PIG1 cells were divided into the UV groups and control group,treated with different doses of UVB and without UVB,respectively.MTT assay and flow cytometry were used to detect cell viability and apoptosis.The expression of Nrf2/HO-1 and melanogenesis-associated proteins/genes was measured by Western blotting and real-time qPCR(RT-qPCR).pCMV6-XL5-Nrf2 was used to upregulate the expression of Nrf2.Subsequently,the proteins/genes levels of Nrf2/HO-1 and tyrosinase(TYR),melanin/eumelanin content,and reactive oxygen species(ROS)were analyzed.Isobologram analysis and cell experiment were used to analyze whether OXYR and RES inhibit TYR synergistically.Western blotting,RT-qPCR,and NaOH splitting method were used to determine the Nrf2/HO-1 and melanogenesis-associated proteins/genes expression and melanin content to evaluate the efficacy of OXYR and RES.Results:The activated Nrf2 and HO-1 eliminated ROS produced by UVB irradiation.The melanogenesis-associated proteins/genes of melanocyte-inducing transcription factor(MITF,P<0.01 on protein expression),TYR(both P<0.01),TYR-related protein(TRP)-1(both P<0.05),and TRP2(P<0.05 on mRNA expression)were activated in PIG1 cells by UVB irradiation.Simultaneously,the upregulation of Nrf2 significantly reduced melanogenesis formation(P<0.001)and TYR level(P<0.01 on protein expression).Moreover,OXYR and RES synergistically inhibited TYR activity(P<0.001)and reduced melanin content(P<0.001).Conclusions:A microbalance exists between Nrf2/HO-1 signaling and melanogenesis production in the UVBinduced responses of melanocytes.Simultaneously,OXYR enhances the ability of RES to inhibit melanin production.
基金supported by the Shaanxi Qinchuang Yuan“scientist+engineer”team construction(No.2023KXJ-080)Shaanxi Chiral Drug Engineering Technology Research Center(Department of Science and Technology of Shaanxi Province.No.[2011]-251).
文摘Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway.
基金Hainan Provincial Natural Science Foundation of China(820RC636)Special Scientific Research Project of Hainan Academician Innovation Platform(YSPTZX202132)Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ222).
文摘Cone snail venoms have been considered a valuable treasure for international scientists and businessmen, mainly due to theirpharmacological applications in development of marine drugs for treatment of various human diseases. To date, around 800Conus species are recorded, and each of them produces over 1,000 venom peptides (termed as conopeptides or conotoxins).This reflects the high diversity and complexity of cone snails, although most of their venoms are still uncharacterized.Advanced multiomics (such as genomics, transcriptomics, and proteomics) approaches have been recently developed to minediverse Conus venom samples, with the main aim to predict and identify potentially interesting conopeptides in an efficientway. Some bioinformatics techniques have been applied to predict and design novel conopeptide sequences, related targets, andtheir binding modes. This review provides an overview of current knowledge on the high diversity of conopeptides andmultiomics advances in high-throughput prediction of novel conopeptide sequences, as well as molecular modeling and designof potential drugs based on the predicted or validated interactions between these toxins and their molecular targets.
基金supported by the National Natural Science Foundation of China(31271659)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD04B10 2011BAD16B01, 2013BAD07B14)
文摘This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.
文摘The development of new/different management and feeding strategies to stimulate gut development and health in newly-weaned pigs, in order to improve growth performance while minimizing the use of antimicrobial compounds such as antibiotic growth promotants (AGP) and heavy mineral compounds, is essential for the long-term sustainability of the pig industry. Factors including the sub-optimal intake of nutrients and energy, inappropriate microbiota biomass and (or) balance, immature and compromised immune function, and psychosomatic factors caused by weaning can compromise both the efficiency of digestion and absorption and intestinal barrier function through mucosal damage and alteration of tight junction integrity. As a consequence, pigs at weaning are highly susceptible to pathogenic enteric conditions such as post-weaning diarrhea that may be caused by serotypes of enterotoxigenic Escherichia coil Many dietary components, e.g., protein, fiber, feed additives and minerals, are known to influence microbial growth in the gastrointestinal tract that in turn can impact upon pig growth and health, although the relationships between these are sometimes not necessarily apparent or obvious. In a world climate of increased scrutiny over the use of antibiotics per se in pig production, certain feed additives are seen as alternatives/replacements to antibiotics, and have evolved in some cases to have important roles in everyday commercial pig nutrition. Nevertheless and in general, there remains inconsistency and variability in the efficacy of some feed additives and in cases of severe disease outbreaks, for example, therapeutic antibiotics and/or heavy minerals such as zinc oxide (ZnO) are generally relied upon. If feed ingredients and (or) feed additives are to be used with greater regularity and reliability, then it is necessary to better understand the mechanisms whereby antibiotics and minerals such as ZnO influence animal physiology, in conjunction with the use of appropriate challenge models and in vitro and in vivo techniques.
文摘After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China's quantitative geoscience and geological big data's rapid development meets present requirements and has kept up with international levels. This paper presents China's decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China's grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.