The search for safer next-generation lithium-ion batteries(LIBs)has driven significant research on non-toxic,non-flammable solid electrolytes.However,their electrochemical performance often falls short.This work prese...The search for safer next-generation lithium-ion batteries(LIBs)has driven significant research on non-toxic,non-flammable solid electrolytes.However,their electrochemical performance often falls short.This work presents a simple,one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P_(111i4)FSI ionic liquid.We investigated the impact of lithium salt concentration and temperature on ion diffusion,particularly lithium-ion(Li^(+))mobility,within these ionogels.Pulsed-field gradient nuclear magnetic resonance(PFG-NMR)revealed enhanced Li^(+)diffusion in the acrylic acid(AA)-based ionogels compared to their non-confined ionic liquid counterparts.Remarkably,Li^(+)diffusion remained favorable in the ionogels regardless of salt concentration.These AA-based ionogels demonstrate very good ionic conductivity(>1 mS cm^(-1) at room temperature)and a wide electrochemical window(up to 5.3 V vs Li^(+)/Li^(0)).These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications.展开更多
Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical a...Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical application is hindered by critical challenges,including Hydrogen evolution reactions(HER)and non-uniform Zn deposition,which compromise electrochemical performance and cycling stability.Herein,we propose a multifunctional hybrid electrolyte additive consisting of vanillin and Dimethyl sulfoxide,designed to weaken the interaction between Zn^(2+)and H_(2)O molecules,effectively modulating the solvation shell structure.In situ optical microscopy shows the hybrid additive significantly suppresses HER and promotes Zn^(2+)deposition on the(002)plane,inhibiting dendritic growth.The Zn||Zn symmetric cells with hybrid additive exhibit exceptional cycling stability,achieving over 4000 h at 1.0 mA cm^(-2)/1.0 m A h cm^(-2).The research on hybrid additives presents significant potential for exploration,offering a promising approach to the development of durable AZIBs.展开更多
Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(...Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(PSCs),However,excess PbI_(2)is also known to accelerate the degradation of the perovskite layer.In this study,we show that this degradation primarily stems from the decomposition of PbI_(2)at the bottom of the perovskite film which is exposed to light We further show that when using a two-step spin coating deposition procedure,the excess PbI_(2)results from the decomposition of the perovskite during the annealing process rather than the presence of non-reacted PbI_(2).Finally,we demonstrate that the spatial distribution of PbI_(2)within the perovskite films can be controlled in a way that mitigates the PbI_(2)induced perovskite decomposition.In this manner,we produced devices exhibiting initial power conversion efficiencies over 25%,maintaining 98.6% after 1000 h of maximum power point tracking under continuous illumination.These findings offer valuable insights into achieving high performance PSCs through judicious process control using a two-step spin-coating procedure.展开更多
Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change an...Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.展开更多
Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from...Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance ...Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.展开更多
Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-io...Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-ion batteries(AIBs),attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging.Herein,we demonstrate a C3N4-derived layered N,S heteroatom-doped carbon,obtained at different pyrolysis temperatures,as a cathode material for AIBs,encompassing the diffusion-controlled intercalation and surface-induced capacity with ultrahigh reversibility.The developed layered N,S-doped corbon(N,S-C)cathode,synthesized at 900℃,delivers a specific capacity of 330 mAhg^(-1)with a relatively high coulombic efficiency of~85%after 500 cycles under a current density of 0.5 A g^(-1).Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms,the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance(61 mAhg^(-1)at 20 A g^(-1))and ultrahigh reversibility(90 mAhg^(-1)at 5Ag^(-1)after 10000cycles).展开更多
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme...A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.展开更多
Neurite outgrowth inhibitor A(Nogo-A)is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and isc...Neurite outgrowth inhibitor A(Nogo-A)is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury.In this work,we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology.Using immunohistochemistry and in situ hybridization techniques,we showed that Nogo-A is highly expressed in the developing mouse teeth and,most specifically,in the ameloblasts that are responsible for the formation of enamel.Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fltransgenic mice,we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel.This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production,such as amelogenin,ameloblastin and enamelin.By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals,we found that Nogo-A directly interacts with molecules important for regulating gene expression,and its deletion disturbs their cellular localisation.Furthermore,we demonstrated that inhibition of the intracellular,but not cell-surface,Nogo-A is responsible for gene expression modulation in ameloblasts.Taken together,these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.展开更多
The electrochemical reversibility of Mg in hybrid electrolytes based on mixtures of ionic liquid and glyme based organic solvents was investigated for applications in rechargeable magnesium batteries(RMBs). The electr...The electrochemical reversibility of Mg in hybrid electrolytes based on mixtures of ionic liquid and glyme based organic solvents was investigated for applications in rechargeable magnesium batteries(RMBs). The electrolytes demonstrate reversible reduction and oxidation of Mg only after being pre-treated with the dehydrating agent, magnesium borohydride, Mg[BH_4]_2, highlighting the importance of removing water in Mg based electrolytes. The addition magnesium di[bis(trifluoromethanesulfonyl)imide](Mg[TFSI]_2)(0.3 M) to N-butyl-n-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4 mpyr][TFSI]/tetraglyme at a mole ratio of 1:2 showed stable CV cycling over almost 300 cycles while scanning electron microscopy(SEM) and X-ray diffraction(XRD) confirmed Mg deposition, showing non-dendritic morphology and a well-aligned growth. Further thermogravimetric analysis(TGA) demonstrated a mass retention of 79% at 250℃ for this electrolyte suggesting that the presence of the ionic liquid increases thermal stability substantially making these hybrid electrolytes compatible for RMBs.展开更多
As an emerging thermal-driven membrane technology,membrane distillation(MD)has attracted immense attention for desalination and water purification.The membranes for MD generally have hydrophobic or superhydrophobic pr...As an emerging thermal-driven membrane technology,membrane distillation(MD)has attracted immense attention for desalination and water purification.The membranes for MD generally have hydrophobic or superhydrophobic properties to enable vapor permeation without liquid passage(e.g.,wetting).However,conventional MD membranes cannot undergo long term stable operations due to gradual wetting in practical applications where the feed solution often contains multiple low-surface tension contaminants(e.g.,oil).Recently,omniphobic membranes repelling all sorts of liquids and typically having ultralow surface energy and re-entrant structures have been developed for robust MD to mitigate wetting and fouling.In this paper,we aim to provide a comprehensive review of recent progress on omniphobic membranes.Fundamentals,desirable properties,advantages and applications of omniphobic membranes are discussed.We also summarize the research efforts and methods to engineer omniphobic membranes.Finally,the challenges and future research directions on omniphobic membranes are discussed.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions COFUND—Grant Agreement No:945357.
文摘The search for safer next-generation lithium-ion batteries(LIBs)has driven significant research on non-toxic,non-flammable solid electrolytes.However,their electrochemical performance often falls short.This work presents a simple,one-step photopolymerization process for synthesizing biphasic liquid–solid ionogel electrolytes using acrylic acid monomer and P_(111i4)FSI ionic liquid.We investigated the impact of lithium salt concentration and temperature on ion diffusion,particularly lithium-ion(Li^(+))mobility,within these ionogels.Pulsed-field gradient nuclear magnetic resonance(PFG-NMR)revealed enhanced Li^(+)diffusion in the acrylic acid(AA)-based ionogels compared to their non-confined ionic liquid counterparts.Remarkably,Li^(+)diffusion remained favorable in the ionogels regardless of salt concentration.These AA-based ionogels demonstrate very good ionic conductivity(>1 mS cm^(-1) at room temperature)and a wide electrochemical window(up to 5.3 V vs Li^(+)/Li^(0)).These findings suggest significant promise for AA-based ionogels as polymer solid electrolytes in future solid-state battery applications.
基金supported by the National Natural Science Foundation of China(52402247)the Innovative Funds Plan of Henan University of Technology(2020ZKCJ07)+1 种基金the Cultivation Project of Tuoxin Team in Henan University of Technology(2024TXTD14)the Doctoral Fund of Henan University of Technology(31401577)。
文摘Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical application is hindered by critical challenges,including Hydrogen evolution reactions(HER)and non-uniform Zn deposition,which compromise electrochemical performance and cycling stability.Herein,we propose a multifunctional hybrid electrolyte additive consisting of vanillin and Dimethyl sulfoxide,designed to weaken the interaction between Zn^(2+)and H_(2)O molecules,effectively modulating the solvation shell structure.In situ optical microscopy shows the hybrid additive significantly suppresses HER and promotes Zn^(2+)deposition on the(002)plane,inhibiting dendritic growth.The Zn||Zn symmetric cells with hybrid additive exhibit exceptional cycling stability,achieving over 4000 h at 1.0 mA cm^(-2)/1.0 m A h cm^(-2).The research on hybrid additives presents significant potential for exploration,offering a promising approach to the development of durable AZIBs.
基金funding support from the National Key R&D Program of China(2021YFF0501900)the Excellent Young Scholar Fund from the National Natural Science Foundation of China(22122903)+1 种基金the Tianjin Distinguished Young Scholar Fund(20JCJQJC00260)support from the Tianchi Talent Program of Xinjiang Uygur Autonomous Region。
文摘Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(PSCs),However,excess PbI_(2)is also known to accelerate the degradation of the perovskite layer.In this study,we show that this degradation primarily stems from the decomposition of PbI_(2)at the bottom of the perovskite film which is exposed to light We further show that when using a two-step spin coating deposition procedure,the excess PbI_(2)results from the decomposition of the perovskite during the annealing process rather than the presence of non-reacted PbI_(2).Finally,we demonstrate that the spatial distribution of PbI_(2)within the perovskite films can be controlled in a way that mitigates the PbI_(2)induced perovskite decomposition.In this manner,we produced devices exhibiting initial power conversion efficiencies over 25%,maintaining 98.6% after 1000 h of maximum power point tracking under continuous illumination.These findings offer valuable insights into achieving high performance PSCs through judicious process control using a two-step spin-coating procedure.
基金supported by The Swedish National Research Programme on Climate and Formas,under grant numbers Dnr.2018-02846 and Dnr.2021-02142,to M.F.,A.F.,and J.S.,and by Linnaeus University,to A.F.and M.F.
文摘Adaptive governance of areas set aside for future protection of biodiversity,sustainable production,and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species.To investigate this,we compare biodiversity of plants(assessed using vegetation plots)and arthropods(collected with Malaise traps,analyzed using metabarcoding)and productivity(tree growth,determined using dendrochronology)in protected and non-protected oak(Quercus spp.)forests along a latitudinal gradient(55.6°N–60.8°N)in Sweden.We also compare historical,recent and projected future climate in the region.In contrast to established global latitudinal diversity gradients,species richness of plants and arthropods increased northwards,possibly reflecting recent climate-induced community redistributions,but neither was higher in protected than in non-protected areas,nor associated with contemporary ground temperature.Species composition of arthropods also did not differ between protected and non-protected areas.Arthropod biomass increased with latitude,suggesting that the magnitude of cascading effects mediated via their roles as pollinators,herbivores,and prey for other trophic levels,varies geographically and will change with a moving climate.Annual growth rate of oaks(an ecosystem service in the form of biomass increase and carbon sequestration)was independent of latitude and did not differ between protected and non-protected areas.Our findings question the efficacy of contemporary designation and management of protected oak forests,and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning,biodiversity,and recreational values of protected forest areas against future challenges.
基金the competence centre Fun Mat-II funded by the Swedish Agency for Innovation Systems(Vinnova,grant no 2016-05156)Swedish Energy Agency(project no 42022-1)+3 种基金Swedish Research Council(VR 2021-04427,VR 2019-05577,VR 2016–05990)the Centre in Nanoscience and Technology(CeNano,Linkoping Institute of Technology(LiTH),Linkoping University,2020,2021)the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University(Faculty Grant SFO-Mat-Li U No.2009-00971)the Knut and Alice Wal enberg Foundation(H2O2,KAW 2018.0058),for support
文摘Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金financed by the National Natural Science Foundation of China(52103212)Jiangxi Provincial Natural Science Foundation(20224BAB214022)+7 种基金the SSF Synergy Program(EM16-0004)Swedish Energy Agency(EM 42033-1)the Knut and Alice Wal enberg(KAW)Foundation through a Fellowship Grant and a Project Grant(KAW2020.0033)Support from the National Natural Science Foundation of China(61774077)the Youth Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2020A1515110738)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120073)the High-End Foreign Experts Project(G20200019046)the Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund(KFVE20200006)
文摘Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.
基金the financial support from the National Natural Science Foundation of China(Grand No.52203092)an SSF Synergy Program(EM16-0004)the National Academic Infrastructure for Supercomputing in Sweden(NAISS)funded by the Swedish Research Council through grant agreement no.202206725
文摘Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-ion batteries(AIBs),attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging.Herein,we demonstrate a C3N4-derived layered N,S heteroatom-doped carbon,obtained at different pyrolysis temperatures,as a cathode material for AIBs,encompassing the diffusion-controlled intercalation and surface-induced capacity with ultrahigh reversibility.The developed layered N,S-doped corbon(N,S-C)cathode,synthesized at 900℃,delivers a specific capacity of 330 mAhg^(-1)with a relatively high coulombic efficiency of~85%after 500 cycles under a current density of 0.5 A g^(-1).Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms,the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance(61 mAhg^(-1)at 20 A g^(-1))and ultrahigh reversibility(90 mAhg^(-1)at 5Ag^(-1)after 10000cycles).
基金supported by funding from Bavarian Center for Battery Technology(Baybatt,Hightech Agenda Bayern)and Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-202245,BTHA-AP-2023-5,and BTHA-AP-2023-12)supported by the University of Bayreuth-Deakin University Joint Ph.D.Program+1 种基金supported by the Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS2023-00213749)
文摘A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.
基金supported by institutional funds from the University of Zurich(T.A.M)and from the Knut and Alice Wallenberg Foundation(C.C.)by additional competitive funds from the Swiss National Science Foundation(SNSF+2 种基金research grant 31003A_179389)(T.A.M.)from the Swiss Dental Association(SSOresearch grant 313-19)(T.A.M.,P.P.)。
文摘Neurite outgrowth inhibitor A(Nogo-A)is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury.In this work,we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology.Using immunohistochemistry and in situ hybridization techniques,we showed that Nogo-A is highly expressed in the developing mouse teeth and,most specifically,in the ameloblasts that are responsible for the formation of enamel.Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fltransgenic mice,we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel.This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production,such as amelogenin,ameloblastin and enamelin.By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals,we found that Nogo-A directly interacts with molecules important for regulating gene expression,and its deletion disturbs their cellular localisation.Furthermore,we demonstrated that inhibition of the intracellular,but not cell-surface,Nogo-A is responsible for gene expression modulation in ameloblasts.Taken together,these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.
基金support from the Australian Research Council for his Australian Laureate Fellowship
文摘The electrochemical reversibility of Mg in hybrid electrolytes based on mixtures of ionic liquid and glyme based organic solvents was investigated for applications in rechargeable magnesium batteries(RMBs). The electrolytes demonstrate reversible reduction and oxidation of Mg only after being pre-treated with the dehydrating agent, magnesium borohydride, Mg[BH_4]_2, highlighting the importance of removing water in Mg based electrolytes. The addition magnesium di[bis(trifluoromethanesulfonyl)imide](Mg[TFSI]_2)(0.3 M) to N-butyl-n-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4 mpyr][TFSI]/tetraglyme at a mole ratio of 1:2 showed stable CV cycling over almost 300 cycles while scanning electron microscopy(SEM) and X-ray diffraction(XRD) confirmed Mg deposition, showing non-dendritic morphology and a well-aligned growth. Further thermogravimetric analysis(TGA) demonstrated a mass retention of 79% at 250℃ for this electrolyte suggesting that the presence of the ionic liquid increases thermal stability substantially making these hybrid electrolytes compatible for RMBs.
文摘As an emerging thermal-driven membrane technology,membrane distillation(MD)has attracted immense attention for desalination and water purification.The membranes for MD generally have hydrophobic or superhydrophobic properties to enable vapor permeation without liquid passage(e.g.,wetting).However,conventional MD membranes cannot undergo long term stable operations due to gradual wetting in practical applications where the feed solution often contains multiple low-surface tension contaminants(e.g.,oil).Recently,omniphobic membranes repelling all sorts of liquids and typically having ultralow surface energy and re-entrant structures have been developed for robust MD to mitigate wetting and fouling.In this paper,we aim to provide a comprehensive review of recent progress on omniphobic membranes.Fundamentals,desirable properties,advantages and applications of omniphobic membranes are discussed.We also summarize the research efforts and methods to engineer omniphobic membranes.Finally,the challenges and future research directions on omniphobic membranes are discussed.