The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field.Although techniques such as the bra...The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field.Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts,the effects of braided silk fiber skeletons on the porosity,remodeling,and patency in vivo have not been thoroughly investigated.展开更多
基金The authors graciously acknowledge professor Deling Kong's lab for their assistance with the animal experiments.This project was supported by the National Natural Science Foundation of China(T2288101,32000968,32071359,11827803,and U20A20390)Beijing Natural Science Foundation(M22026)Fundamental Research Funds for the Central Universities,and 111 Project(B13003).
文摘The development of small-diameter vascular grafts that can meet the long-term patency required for implementation in clinical practice presents a key challenge to the research field.Although techniques such as the braiding of scaffolds can offer a tunable platform for fabricating vascular grafts,the effects of braided silk fiber skeletons on the porosity,remodeling,and patency in vivo have not been thoroughly investigated.