Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor ...Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.展开更多
Correctly tracking the evolution of spatial heterogeneity of local degree of saturation(Sr)in unsaturated soils is essential to explain the seepage phenomenon,which is crucial to assessing slope stability.Several meth...Correctly tracking the evolution of spatial heterogeneity of local degree of saturation(Sr)in unsaturated soils is essential to explain the seepage phenomenon,which is crucial to assessing slope stability.Several methods exist for quantifying the heterogeneity of local S_(r).However,a comprehensive comparison of these methods in terms of accuracy,relative advantages,and disadvantages is currently lacking.This paper presents a comparative analysis of local Sr obtained at multiple scales,ranging from the element scale to the slice,representative element volume(REV),pore,and voxel scales.The spatial heterogeneity of Sr in an unsaturated glass beads specimen at different matric suctions was visualised and quantified by multiscale X-ray micro-focus computed tomography image-based analysis methods.Local Sr obtained at different scales displayed a comparable trend along the sample depth,yet the REV-scale method showed a much scattered and discontinuous distribution.In contrast,the pore-scale method detected a distinct two-clustered,bimodal distribution of S_(r).The pore-scale method has the highest integrated resolution,as it has the highest spatial resolution(i.e.number of data points)and provides more information(i.e.number of extractable physical parameters).This method thus provides a more effective approach for tracking the spatial heterogeneity of S_(r).Based on this method,pore-scale water retention curves were determined,offering new quantitative means to characterise pore water heterogeneity and explainwater drainage processes such as hysteresis at the pore scale.展开更多
The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic.To reduce waste and minimize environmental impact,we present a new face mask featuring selfcharging extend...The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic.To reduce waste and minimize environmental impact,we present a new face mask featuring selfcharging extended service time and fully biodegradable materials.To extend the effective service time,we need to supplement the lost electric charge of the electret layer of face masks,for which task we propose to use the piezoelectric effect and generate electricity from breathing motions.However,existing piezoelectric materials are either toxic,impermeable,rigid,costly,or non-degradable.We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol(PVA)and glycine(GLY)via the electrospinning process.Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectricβphase during electrospinning and enables piezoelectric responses of the filter membrane.Tested with the standard 0.3μm particles,face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%,which remains stable over at least 10 h of high-concentration continuous filtration.Furthermore,we demonstrated the biodegradability of PVA-GLY masks,which can degrade completely within a few weeks,compared to commonly used surgical masks requiring over thirty years to be decomposed.展开更多
Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combin...Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combined with heat treatment is an promising method to optimize the microstructure of TiAl alloys and improve their mechanical properties.However,systematic investigations into the microstructural evolution under high temperature pressure/external stress are limited.In this study,by integrating phase field simulations and CALPHAD thermodynamic database,a unique microstructural response to external stress during aging process is revealed.With the increase of external stress,the size of the lamellar structure initially decreases but then increases,while the number of twin structures initially rises but then decreases,showing nonlinear relationships.An increase in external stress shifts the free energy curves,altering the position of c0(the intersection position between free energies ofα_(2)andγ),which leads to a change in the nucleation mechanism from classical nucleation to pseudo-spinodal decomposition and influences the final microstructure ofγprecipitates.Further simulations indicate a linear correlation between optimal external stress and varying Al content.A deeper analysis indicates that the observed variations in the size and twin structures can be attributed to the interplay among the growth rate of existing variants,the competitive nucleation rates of twinned variants and the redistribution of composition under different external stresses.Our findings provide new insights into optimizing microstructures by pressure/external stress in precipitation processes.展开更多
Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between ...Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between coarser and finer particles,this research differentiates the stiffness distribution of gap-graded soils from the perspective of contact and particle types.Results indicate that particle property disparity significantly influence the small-strain stiffness characteristics,consequently altering the overall stiffness distribution in gap-graded soil specimens.Specifically,with the equivalent coarser particle property,an increase in particle Young's modulus of finer particles results in an augmentation of small-strain stiffness values,alongside an increased stiffness distribution contribution from finer particles.Nevertheless,this study reveals that even with a higher particle Young's modulus of finer particles,the proportion of small-strain stiffness transferred by finer particles remains consistently lower than their volume fraction.Furthermore,the proportion of stiffness transferred by finer particles may fall below their contribution to stress transmission.This investigation accentuates the subtle yet significant effects of particle property variations on small strain stiffness and its subsequent distribution,providing a foundation for advancing the significance of particle property disparities in evaluating soil responses.展开更多
The history of acoustic metamaterials can be traced back to the turn of the 215 century,when the local res-onances of subwavelength structures were leveraged for acoustic properties unavailable in natural materials.[1...The history of acoustic metamaterials can be traced back to the turn of the 215 century,when the local res-onances of subwavelength structures were leveraged for acoustic properties unavailable in natural materials.[1 Over a quarter of 8 century,acoustic metamaterials have continued to thrive as numerous novel acoustic effects have been investigated and realized.[2-6]However,acous-tic metamaterials were entirely passive in their early days,thus indicating that their functionalities were singular and entirely determined at the fabrication stage.Additionally,even at the effective-medium level,such passive metama-terials must obey fundamental laws,such as time reversal symmetry and causality.These limitations can be over-come by employing active components in metamaterial design.Thus,we surveyed the development,functionalities,and implications of active acoustic metamaterials.展开更多
Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity...Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity hydrogen for aerospace and high-end manufacturing applications. Withthe ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction(OER) catalysts remains imperative to reconcile stringent requirements for high activity, extendedlongevity, and minimized noble metal loading. The review provides a systematic analysis of theintegrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER,including the operation environment of OER catalysts, catalytic performance evaluation withinPEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classificationand preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategiesfor performance enhancement is presented. Specifically, we construct a mathematical frameworkfor cost-performance optimization to offer quantitative guidance for catalyst design. Finally, futureperspectives are proposed, aiming to establish a theoretical framework for rational catalyst design.展开更多
Sensorless control of switched reluctance motors(SRMs) often requires a hybrid mode combining low-speed pulse injection methods and high-speed model-based estimation.However,pulse injection causes unwanted audible noi...Sensorless control of switched reluctance motors(SRMs) often requires a hybrid mode combining low-speed pulse injection methods and high-speed model-based estimation.However,pulse injection causes unwanted audible noises and torque ripples.This article proposes an enhanced model-based sensorless approach to extend downwards the speed range in which sensorless control can work without injection.An inertial phase-locked loop (IPLL) based on a stator flux observer is introduced for position estimation.Compared to the conventional phase-locked loop scheme,the IPLL offers a more robust disturbance rejection capability and thus reduces the flux model errors at lower speeds.Experimental results substantiate the feasibility of the extended low-speed operation using the model-based sensorless control approach.展开更多
One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant ...One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.展开更多
Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modalit...Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.展开更多
Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies.Histone modifications act as the key factors to modulate the chromatin accessibility.Different histo...Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies.Histone modifications act as the key factors to modulate the chromatin accessibility.Different histone modifications are strongly associated with the localization of chromatin.Heterochromatin primarily localizes at the nuclear periphery,where it interacts with lamina proteins to suppress gene expression.In this review,we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery.We use lamina-associated domains(LADs)as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development.In the end,we highlight the technologies that are currently used to identify and visualize histone modifications and LADs,which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.展开更多
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma...Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.展开更多
Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains in...Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains insufficiently optimized,demanding more profound mechanistic studies and engineering refinements.To address the difficulties in resolving the flow inhomogeneity at the stack scale,this study establishes a multi-physics field coupling model and analyzes the pressure distributions,flow rate differences,active substance concentration,and electrochemical characteristics.The results show that the uneven cell pressure distribution is a key factor affecting the consistency of the system performance,and the increase in the flow rate improves the reactant homogeneity,with both the average concentration and the uniformity factor increasing with the flow rate.In contrast,high current densities lead to an increased imbalance between electrochemical depletion and reactant replenishment,resulting in a significant decrease in reactant concentration in the under-ribs region.In addition,a higher flow rate can expand the high-current-density region where the stack operates efficiently.This study provides a theoretical basis for optimizing the design of the stack components.展开更多
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,...Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.展开更多
Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generati...Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.展开更多
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop...The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal eq...We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.展开更多
The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporat...The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporation,while a digital camera was utilized to capture the initiation and progression of soil surface cracking.Results indicate that in the early drying process,the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass.For soil samples with the same layer thickness,the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts.As the layer thickness increases,both vegetated and bare soil samples crack at higher water content.However,vegetated soil samples crack at lower water content than their bare soil counterparts.Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance.The crack reduction ratio is positively correlated with both root weight and length density.In thicker vegetated soil layers,the final surface crack length noticeably declines.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U21B2053,52071114,52001100,and 523B2010)Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(No.YQ2023E008)+1 种基金Young Elite Scientists Sponsorship Program by CAST(NO.2021QNRC001)Heilongjiang Touyan Team Program.
文摘Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate.
基金support provided by the research funds from the Hong Kong Research Grants Council(Grant Nos.16206623,N_HKUST603/22,and C6006-20G).
文摘Correctly tracking the evolution of spatial heterogeneity of local degree of saturation(Sr)in unsaturated soils is essential to explain the seepage phenomenon,which is crucial to assessing slope stability.Several methods exist for quantifying the heterogeneity of local S_(r).However,a comprehensive comparison of these methods in terms of accuracy,relative advantages,and disadvantages is currently lacking.This paper presents a comparative analysis of local Sr obtained at multiple scales,ranging from the element scale to the slice,representative element volume(REV),pore,and voxel scales.The spatial heterogeneity of Sr in an unsaturated glass beads specimen at different matric suctions was visualised and quantified by multiscale X-ray micro-focus computed tomography image-based analysis methods.Local Sr obtained at different scales displayed a comparable trend along the sample depth,yet the REV-scale method showed a much scattered and discontinuous distribution.In contrast,the pore-scale method detected a distinct two-clustered,bimodal distribution of S_(r).The pore-scale method has the highest integrated resolution,as it has the highest spatial resolution(i.e.number of data points)and provides more information(i.e.number of extractable physical parameters).This method thus provides a more effective approach for tracking the spatial heterogeneity of S_(r).Based on this method,pore-scale water retention curves were determined,offering new quantitative means to characterise pore water heterogeneity and explainwater drainage processes such as hysteresis at the pore scale.
基金supported by General Research Grants (GRF Project No. 11212021 and No. 11210822) from the Research Grants Council of the Hong Kong Special Administrative Regionthe Innovation and Technology Fund (Project No. ITS/065/20GHP/096/19SZ) from Innovation and Technology Commission of Hong Kong Special Administrative Region
文摘The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic.To reduce waste and minimize environmental impact,we present a new face mask featuring selfcharging extended service time and fully biodegradable materials.To extend the effective service time,we need to supplement the lost electric charge of the electret layer of face masks,for which task we propose to use the piezoelectric effect and generate electricity from breathing motions.However,existing piezoelectric materials are either toxic,impermeable,rigid,costly,or non-degradable.We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol(PVA)and glycine(GLY)via the electrospinning process.Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectricβphase during electrospinning and enables piezoelectric responses of the filter membrane.Tested with the standard 0.3μm particles,face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%,which remains stable over at least 10 h of high-concentration continuous filtration.Furthermore,we demonstrated the biodegradability of PVA-GLY masks,which can degrade completely within a few weeks,compared to commonly used surgical masks requiring over thirty years to be decomposed.
基金supported by the National Key Research and Development Program of China(No.2021YFB3702603)the Outstanding Youth Fund of Shaanxi Province(No.2024JC-JCQN-45)+3 种基金the Scientist+Engineer Teams in Shaanxi’s Qin Chuangyuan Initiative(No.2023KXJ-183)the National Natural Science Foundation of China(No.52171012)111 Project(No.BP2018008),the GHfundA(No.202302019461)“H2”High-Performance Cluster.
文摘Reducing the size of the lamellar structures and increasing the number of twin structures are both effective strategies for enhancing the ductility and fracture toughness ofγ-TiAl alloys.Hot isostatic pressing combined with heat treatment is an promising method to optimize the microstructure of TiAl alloys and improve their mechanical properties.However,systematic investigations into the microstructural evolution under high temperature pressure/external stress are limited.In this study,by integrating phase field simulations and CALPHAD thermodynamic database,a unique microstructural response to external stress during aging process is revealed.With the increase of external stress,the size of the lamellar structure initially decreases but then increases,while the number of twin structures initially rises but then decreases,showing nonlinear relationships.An increase in external stress shifts the free energy curves,altering the position of c0(the intersection position between free energies ofα_(2)andγ),which leads to a change in the nucleation mechanism from classical nucleation to pseudo-spinodal decomposition and influences the final microstructure ofγprecipitates.Further simulations indicate a linear correlation between optimal external stress and varying Al content.A deeper analysis indicates that the observed variations in the size and twin structures can be attributed to the interplay among the growth rate of existing variants,the competitive nucleation rates of twinned variants and the redistribution of composition under different external stresses.Our findings provide new insights into optimizing microstructures by pressure/external stress in precipitation processes.
基金Financial supports from the PolyU Distinguished Postdoctoral Fellowship Scheme are highly appreciatedsupported by the National Natural Science Foundation of China (Grant No.52201008)the Fundamental Research Funds for the Central Universities,the State Key Laboratory of Particle Detection and Electronics (Grant No.SKLPDE-KF-202311).
文摘Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between coarser and finer particles,this research differentiates the stiffness distribution of gap-graded soils from the perspective of contact and particle types.Results indicate that particle property disparity significantly influence the small-strain stiffness characteristics,consequently altering the overall stiffness distribution in gap-graded soil specimens.Specifically,with the equivalent coarser particle property,an increase in particle Young's modulus of finer particles results in an augmentation of small-strain stiffness values,alongside an increased stiffness distribution contribution from finer particles.Nevertheless,this study reveals that even with a higher particle Young's modulus of finer particles,the proportion of small-strain stiffness transferred by finer particles remains consistently lower than their volume fraction.Furthermore,the proportion of stiffness transferred by finer particles may fall below their contribution to stress transmission.This investigation accentuates the subtle yet significant effects of particle property variations on small strain stiffness and its subsequent distribution,providing a foundation for advancing the significance of particle property disparities in evaluating soil responses.
文摘The history of acoustic metamaterials can be traced back to the turn of the 215 century,when the local res-onances of subwavelength structures were leveraged for acoustic properties unavailable in natural materials.[1 Over a quarter of 8 century,acoustic metamaterials have continued to thrive as numerous novel acoustic effects have been investigated and realized.[2-6]However,acous-tic metamaterials were entirely passive in their early days,thus indicating that their functionalities were singular and entirely determined at the fabrication stage.Additionally,even at the effective-medium level,such passive metama-terials must obey fundamental laws,such as time reversal symmetry and causality.These limitations can be over-come by employing active components in metamaterial design.Thus,we surveyed the development,functionalities,and implications of active acoustic metamaterials.
文摘Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity hydrogen for aerospace and high-end manufacturing applications. Withthe ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction(OER) catalysts remains imperative to reconcile stringent requirements for high activity, extendedlongevity, and minimized noble metal loading. The review provides a systematic analysis of theintegrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER,including the operation environment of OER catalysts, catalytic performance evaluation withinPEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classificationand preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategiesfor performance enhancement is presented. Specifically, we construct a mathematical frameworkfor cost-performance optimization to offer quantitative guidance for catalyst design. Finally, futureperspectives are proposed, aiming to establish a theoretical framework for rational catalyst design.
基金supported in part by the National Natural Science Foundation of China 52307069in part by 2024 Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau under Grant2024312176in part by the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone under Grant HZQB-KCZYB-2020083。
文摘Sensorless control of switched reluctance motors(SRMs) often requires a hybrid mode combining low-speed pulse injection methods and high-speed model-based estimation.However,pulse injection causes unwanted audible noises and torque ripples.This article proposes an enhanced model-based sensorless approach to extend downwards the speed range in which sensorless control can work without injection.An inertial phase-locked loop (IPLL) based on a stator flux observer is introduced for position estimation.Compared to the conventional phase-locked loop scheme,the IPLL offers a more robust disturbance rejection capability and thus reduces the flux model errors at lower speeds.Experimental results substantiate the feasibility of the extended low-speed operation using the model-based sensorless control approach.
基金supported by the National Natural Science Foundation of China(22272065)the Natural Science Foundation of Jiangsu Province(BK20211530)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP62218)the Key Research and Development Special Project of Yi'chun City,Jiangxi Province,China(2023ZDYFZX06).
文摘One-dimensional perovskites possess unique photoelectric properties that distinguish them from other perovskitetypes, making them a focal point in photoelectric research. In recent years, there has been a significant surge ininterest surrounding the synthesis and application of one-dimensional anisotropic perovskites, spurred by ad-vancementsin synthesis techniques and notable breakthroughs in novel methodologies and application proper-ties.This article provides a comprehensive review of the progress made in research on one-dimensionalanisotropic perovskites, detailing the synthesis mechanisms and potential pathways for performance enhance-mentin various applications. We highlight the crucial role of controllable synthesis and heterogeneous effect intailoring perovskite properties to boost application efficacy. Initially, this review examines the primary synthesismethods and mechanisms for creating heterogeneously induced one-dimensional anisotropic perovskites, cate-gorizingthem into two main approaches: the classical wet chemical synthesis, which utilizes selective ligands, andthe ligand-free, substrate-assisted method. The precision in controllable synthesis is essential for fabricatingheterogeneous structures, where the synthesized precursor, shape, and surface ligand significantly influence theinterfacial strength of the heterogenic interface. We also discuss the key features that must be improved for high-performanceapplications, exploring how heterogeneous effects can enhance performance and drive the devel-opmentof heterogeneous devices in various applications, such as photodetectors, solar cells, light-emitting di-odes,and photocatalysis. Conclusively, by highlighting the emerging potential and promising opportunitiesoffered by strategic heterogeneous construction, we forecast a dynamic and transformative future for their pro-ductionand application landscapes.
基金supported by the National Key R&D Program of China,No.2023YFC2509700the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund,No.L232141the Research and Application of Clinical Characteristic Diagnosis and Treatment Program,No.Z221100007422019(all to WD)。
文摘Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.
基金financially supported by the National Natural Science Foundation of China(32100450 and 32471370 to Q.P.,12372302 to J.Q.)the Guangdong Pearl River Talent Program(2021QN02Y781 to Q.P.)the Evident&Shenzhen Bay Laboratory Joint Optical Microscopic Imaging Technology Development Program(S234602004-1 to Q.P.).
文摘Gene expression is regulated by chromatin architecture and epigenetic remodeling in cell homeostasis and pathologies.Histone modifications act as the key factors to modulate the chromatin accessibility.Different histone modifications are strongly associated with the localization of chromatin.Heterochromatin primarily localizes at the nuclear periphery,where it interacts with lamina proteins to suppress gene expression.In this review,we summarize the potential bridges that have regulatory functions of histone modifications in chromatin organization and transcriptional regulation at the nuclear periphery.We use lamina-associated domains(LADs)as examples to elucidate the biological roles of the interactions between histone modifications and nuclear lamina in cell differentiation and development.In the end,we highlight the technologies that are currently used to identify and visualize histone modifications and LADs,which could provide spatiotemporal information for understanding their regulatory functions in gene expression and discovering new targets for diseases.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the National Natural Science Foundation of China(Grant Nos.42461160266 and 52379106).
文摘Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers.
基金supported by National Natural Science Foundation of China(No.524B2078,12426307,51906203)Guangdong Major Project of Basic and Applied Basic Research(2023B0303000002)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2023B1515120005)Natural Science Foundation of Shenzhen(JCYJ20241202125327036,JCYJ20240813100103005)Shenzhen Engineering Research Center of Redox Flow Battery for Energy Storage(XMHT20230208003)Research Project on Medium-and Long-Duration Flow Battery Energy Storage Technology(2024KJTW0015)China Association for Science and Technology(OR2308010)High level of special funds(G03034K001)supported by the Center for Computational Science and Engineering at the Southern University of Science and Technology.
文摘Long-duration energy storage has become critical for renewable energy integration.While redox flow batteries,especially vanadium-based systems,are scaling up in capacity,their performance at the stack level remains insufficiently optimized,demanding more profound mechanistic studies and engineering refinements.To address the difficulties in resolving the flow inhomogeneity at the stack scale,this study establishes a multi-physics field coupling model and analyzes the pressure distributions,flow rate differences,active substance concentration,and electrochemical characteristics.The results show that the uneven cell pressure distribution is a key factor affecting the consistency of the system performance,and the increase in the flow rate improves the reactant homogeneity,with both the average concentration and the uniformity factor increasing with the flow rate.In contrast,high current densities lead to an increased imbalance between electrochemical depletion and reactant replenishment,resulting in a significant decrease in reactant concentration in the under-ribs region.In addition,a higher flow rate can expand the high-current-density region where the stack operates efficiently.This study provides a theoretical basis for optimizing the design of the stack components.
基金supported by the National Natural Science Foundation of China (No.41875155)Natural Key Research and Development Program of China (No.2019YFA0607004)+1 种基金Environment and Conservation Fund/Woo Wheelock Green Fund (No.ECWW09EG04)Strategic Priority Research Program (B)of the Chinese Academy of Sciences (No.XDB05040502)。
文摘Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.
基金supported by grants from the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(31961160726)the National Key Research and Development Program of China(2018YFA0800200)+1 种基金the Major Program of Shenzhen Bay Laboratory(S201101002)the Research Grants Council of Hong Kong(RGC/NFSC N_HKUST603/19,16102022,16101621,T13-605/18-W,T13-602/21-N).
文摘Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515010875)Guangdong Basic and Applied Basic Research Foundation(2021A1515110017)+10 种基金Natural Science Foundation of Top Talent of SZTU(grant no.20200205)Project of Education Commission of Guangdong Province of China(2021KQNCX080)Research on the electrochemical reaction mechanism of the anode of mediumlow temperature direct ammonia SOFCs(20231063020006)the project of al solid-state high energy density energy storage system(20221063010031)the project of Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct ammonia SOFCs(20221061010002)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011673)Education Department of Guangdong Province(No.2021KCXTD045)National Natural Science Foundation of China(No.12274303)the support from the Fundamental Research Funds for the Central Universities(2232023A-01)NSFC No.52103202beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for the synchrotron experiment
文摘The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金supported in part by the Hong Kong RGC 16302223.
文摘We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.
基金support from the National Natural Science Foundation of China(Grant No.42172290,42230710,41925012)the Natural Science Foundation of Jiangsu Province(Grant No.BK20221250).
文摘The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil.During the experiment,an electronic balance was employed to quantify water evaporation,while a digital camera was utilized to capture the initiation and progression of soil surface cracking.Results indicate that in the early drying process,the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass.For soil samples with the same layer thickness,the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts.As the layer thickness increases,both vegetated and bare soil samples crack at higher water content.However,vegetated soil samples crack at lower water content than their bare soil counterparts.Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance.The crack reduction ratio is positively correlated with both root weight and length density.In thicker vegetated soil layers,the final surface crack length noticeably declines.